VACUUMSCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X761

Date:

17.08.2017

K-no.: 26019 25 A Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Customers Part no.: Page 1 of 4

Customer: Standard type Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- · Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- · Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- · Short response time
- · Wide frequency bandwidth
- Compact design
- · Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	25	Α
V_{out}	Output voltage @ I _P	$V_{Ref} \pm (0.625^* I_P / I_{PN})$	V
V_{out}	Output voltage @ I _P =0, T _A =25°C	$V_{Ref} \pm 0.00135$	V
V_{Ref}	External Reference voltage range	04	V
	Internal Reference voltage	2.5 ±0.005	V
K _N	Turns ratio	14 : 2000	

Accuracy - Dynamic performance data

	<u> </u>	mın.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±85			
Χ	Accuracy @ I _{PN} , T _A = 25°C			0.7	%
εL	Linearity			0.1	%
V_{out} - V_{Ref}	Offset voltage @ I _P =0, T _A = 25°C			±1.35	mV
$\Delta V_o / V_{Ref} / \Delta T$	Temperature drift of V_{out} @ $I_P=0$, $V_{Ref}=2,5V$, $T_A=-40$)85°C	1.4	10	ppm/°C
t_r	Response time @ 90% von I _{PN}		300		ns
Δt (I _{P,max})	Delay time at di/dt = 100 A/μs		200		ns
f	Frequency bandwidth	DC200			kHz

General data

		min.	typ.	max.	Unit
T_A	Ambient operating temperature	-40		+85	°C
Ts	Ambient storage temperature (acc to M3101)	-40		+105	°C
m	Mass		12		g
V_{C}	Supply voltage	4.75	5	5.25	V
Ic	Current consumption		15		mA

Constructed and manufactored and tested in accordance with EN 61800-5-1 (Pin 1-4 to Pin 5-12) Reinforced insulation, Insulation material group 1, Pollution degree 2

S _{clear}	Clearance (component without solder pad)	9.6		mm
Screep	Creepage (component without solder pad)	10.6		mm
V_{sys}	System voltage overvoltage category 3	RMS	600	V
V_{work}	Working voltage	RMS	1060	V
U_PD	Rated discharge voltage	peak value	1320	V

Note: According UL 508: Max. potential difference = 600 V_A

Date	Name	Issue	Amendment					
17.08.17	DJ	83	Page 3, Type	age 3, Type test M3064 accurately defined. Minor change.				
21.02.17	BZ	83	Page A1, M-s	age A1, M-sheet M3101 added (storage temperature). Minor change				
Hrsg.: R&	D-PD-N		Bearb: Le	MC-PM: Ga.	freig.: BEF released			

SPECIFICATION Item no.: T60404-N4646-X761 K-no.: 26019 Date: 17.08.2017 25 A Current Sensor for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Page Customers Part no.: 2 of Customer: Standard type Mechanical outline (mm): General tolerances DIN ISO 2768-c Connections: 1...4: 0,46*0,46 mm 5..12: Ø 1 mm 12,7 13,7 3x1,905 Marking: UL-sian 10,16 4646-X761-83 22,2 Marking test dimension c**PL**us 24 Tolerances grid distance ±0,25mm 0,5 +0,1 -0 DC= Date Code F = Factory **Explanation:** 3,5±0,5 DC = Date Code [YWW] Schematic diagram 680 -04 V_c int REF 0 1 V_{ref} IN / OUT 40k 10k OUT o 2 V_{out} 10k 40k O3 GND

4

DC

Possibilities of wiring (@ T_A = 85°C)

9...120-

primary windings	primary RMS	/ current maximal	output voltage RMS	turns ratio	primary resistance	wiring
N _P	I _P [A]	Î _{P,max} [A]	$V_{out}(I_P)[V]$	K_N	R_P [m Ω]	
1	25	±85	2.5±0.625	1:2000	0.25	9 12
2	12	±42	2.5±0.600	2:2000	1.0	9 12
4	6	±21	2.5±0.600	4:2000	4	9 12

freig.: BEF Hrsg.: R&D-PD-NPI MC-PM: Ga. Bearb: Le check

SPECIFICATION Item no.: T60404-N4646-X761 K-no.: 26019 Date: 17.08.2017 25 A Current Sensor for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Customers Part no.: Page 4 3 of Customer: Standard type

Electrical	Data

		min.	typ.	max.	Unit
V _{Ctot}	Maximum supply voltage (without function)			7	V
Ic	Supply Current with primary current	15mA	$+I_p*K_N+V_{ol}$	_{ut} /R _L	mA
I _{out,SC}	Short circuit output current		±20		mA
R_P	Resistance / primary winding @ T _A =25°C		1		$m\Omega$
Rs	Secondary coil resistance @ T _A =85°C			67	Ω
$R_{i,Ref}$	Internal resistance of Reference input		670		Ω
R_{i} , (V_{out})	Output resistance of Vout			1	Ω
R_L	External recommended resistance of Vout	1			$k\Omega$
C_L	External recommended capacitance of Vout			500	pF
$\Delta X_{Ti}/\Delta T$	Temperature drift of X @ T _A = -40 +85 °C			40	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:		2	6	mV
V_{0t}	Longtermdrift of V ₀		1		mV
V _{0T}	Temperature drift von V ₀ @ T _A = -40+85°C		1		mV
V_{0H}	Hysteresis of V _{out} @ I _P =0 (after an overload of 10 x I _{PN})		2	mV
V _{0H}	Hysteresis of V _{out} @ I _P =0 (after an overload of 66 A)			0.5	mV
$\Delta V_0/\Delta V_C$	Supply voltage rejection ratio			1	mV/V
V _{oss}	Offsetripple (with 1 MHz- filter first order)			30	mV
V _{oss}	Offsetripple (with 100 kHz- filter first order)		3	6	mV
V _{oss}	Offsetripple (with 20 kHz- filter first order)		0.8	1.5	mV
C_k	Maximum possible coupling capacity (primary – see Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hours	condary)	5	10 30g	pF

Inspection (Measurement after temperature balance of the samples at room temperature; SC = significant characteristic)

$V_{out}(I_P=I_{PN})$	(V) M3011/6:	Output voltage vs. external reference (I _P =25A, 40-80Hz)	625±0,7%	mV (SC)
V_{out} – V_{Ref} (I_P =	=0) (V) M3226:	Offset voltage	± 1.35	mV
V_d	(V) M3014:	Test voltage, rms, 1 s pin 1 – 4 vs. pin 5 – 12	1.8	kV
V _e	(AQL 1/S4)	Partial discharge voltage acc.M3024 (RMS)	1400	V
		with V _{vor} (RMS)	1750	V

Type Testing (Pin 1 - 4 to Pin 5 - 12)

V _W	HV transient test according to M3064 (1.2 μs / 50 μs-ν 5 pulse → polarity +, 5 pulse → polarit -	8	kV	
V_d	Testing voltage to M3014	(5 s)	3.6	kV
Ve	Partial discharge voltage acc.M3024 (RMS)		1400	V
	with V _{vor} (RMS)		1750	V

Applicable documents

Current direction: A positive output current appears at point I_{S_1} by primary current in direction of the arrow.

Housing and bobbin material UL-listed: Flammability class 94V-0.

Enclosures according to IEC529: IP50.

Operating temperature of the current sensor and the primary conductor must not exceed 105°C

Further standards UL 508; file E317483, category NMTR2 / NMTR8

Hrsg.: R&D-PD-NPI	Bearb: Le	MC-PM: Ga.		freig.: BEF
editor	designer	check		released

SPECIFICATION

Item no.: T60404-N4646-X761

K-no.: 26019

25 A Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit

Date: 17.08.2017

Customer: Standard type Customers Part no.: Page 4 of 4

Explanation of several of the terms used in the tablets (in alphabetical order)

(electronic circuit)

t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{PN}$ between a rectangular current and the output voltage V_{OUt} (I_p)

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage $V_{out}(I_{Pmax})$ with a primary current rise of dip/dt \geq 100 A/ μ s.

 V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{ref}=2,5V.$ $V_o=V_{out}(0)\,$ - 2,5V

 V_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e $V_{PD} = \sqrt{2} \times V_e / 1.5$

V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $V_{vor} = 1.875 * U_{PD} / \sqrt{2}$

V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

V_{0H}: Zero variation of V₀ after overloading with a DC of tenfold the rated value

V_{0t}: Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

 $X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625 V} - 1 \right| \%$

X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

 $\mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - 2,5V}{0,625 \text{V}} - 1 \right| \quad \% \quad \text{or} \quad \mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - V_{\textit{ref}}}{0,625 \text{V}} - 1 \right| \quad \%$

 $\varepsilon_{\rm L}\!\!: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L}\!\!=\!100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{\scriptscriptstyle out}(I_{\scriptscriptstyle P}) - V_{\scriptscriptstyle out}(0)}{V_{\scriptscriptstyle out}(I_{\scriptscriptstyle PN}) - V_{\scriptscriptstyle out}(0)} \right| \, \%$