

index ..... 2-5
FIXED RESISTORS ..... 7-33
RESISTOR NETWORKS ..... 35-78
PANEL POTENTIOMETERS ..... 79-155
TRIMMING POTENTIOMETERS ..... 157-184
ADJUSTABLE ATTENUATORS ..... 185-199
terms of sale200-202
sales offices203-205
sales offices - international ..... 206-207


| DESCRIPTION | TYPE | PAGE | DESCRIPTION | TYPE | PAGE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PANEL POTENTIOMETERS |  |  | HOT-MOLDED COMPOSITION MULTI-TURN |  |  |
| HOT-MOLDED COMPOSITION |  |  | Rectangular Configuration |  |  |
| $1 / 2$ (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) | Type G (Style RV6) | 83 | 1-1/4 (1.25) Inch ( $31,75 \mathrm{~mm}$ ) <br> Long Rectangular -0.33 Watt ( $50^{\circ} \mathrm{C}$ ) | Type N | 170 |
| $1 / 2$ (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) | Type W | 118 | 1-1/4 (1.25) Inch ( $31,75 \mathrm{~mm}$ ) <br> Long Rectangular -0.25 Watt $\left(70^{\circ} \mathrm{C}\right)$ | Type R | 173 |
| 1/2 (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) | $\begin{aligned} & \text { Type GD } \\ & \text { (Dual) } \end{aligned}$ | 128 |  |  |  |
| 1/2 (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) | Type WR | 136 | $\begin{aligned} & \text { ADJUSTABLE ATTENUATORS } \\ & \text { HOT-MOLDED COMPOSITION } \end{aligned}$ |  |  |
| 1/2 (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.8 Watt ( $70^{\circ} \mathrm{C}$ ) | Type L | 108 | 1/2 (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter -Bridged-T-Pads 0.25 Watt ( $50^{\circ} \mathrm{C}$ ) | Type BT | 192 |
| 1.5/32 (1.156) Inch ( $29,36 \mathrm{~mm}$ ) Diameter 2.25 Watts ( $70^{\circ} \mathrm{C}$ ) | [1 Type J (Style RV4) | 91 | $1 / 2(0.5)$ Inch ( $12,70 \mathrm{~mm}$ ) Diameter -Bridged-T-Pads 0.5 Watt $\left(70^{\circ} \mathrm{C}\right)$ | Type FD | 196 |
| 1-5/32 (1.156) Inch ( $29,36 \mathrm{~mm}$ ) Diameter 2.25 Watts ( $70^{\circ} \mathrm{C}$ ) | Type EJ <br> (Extra Life) | 124 | L-Pads 0.25 Watt $\left(70^{\circ} \mathrm{C}\right)$ | Type GD | 196 |
| 1.5/32 (1.156) Inch ( $29,36 \mathrm{~mm}$ ) Diameter 3.0 Watts ( $70^{\circ} \mathrm{C}$ ) | Type K | 100 | Bridged-T-Pads 1.0 Watt $\left(70^{\circ} \mathrm{C}\right)$ <br> L-Pads 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) |  |  |
| $\begin{aligned} & \text { 5/8 (0.625) Inch ( } 15,88 \mathrm{~mm} \text { ) Square - } \\ & 0.5 \text { Watt }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Series 72 <br> MOD POT* | 142 | $5 / 8$ (0.625) Inch ( $15,88 \mathrm{~mm}$ ) Square -Bridged-T-Pads 1.0 Watt $\left(70^{\circ} \mathrm{C}\right)$ | MOD POT* | 142 |
| $5 / 8$ ( 0.625 ) Inch ( $15,88 \mathrm{~mm}$ ) Square - 0.75 Watt $\left(70^{\circ} \mathrm{C}\right) 1.0$ Watt $\left(40^{\circ} \mathrm{C}\right)$ | Series 73 <br> MOD POT* | 142 | Bridged-H-Pads 1.0 Watt ( $70^{\circ} \mathrm{C}$ ) <br> L-Pads 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) |  |  |
| $5 / 8$ (0.625) Inch ( $15,88 \mathrm{~mm}$ ) Square - | Series 70 | 142 | Straight-T-Pads 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) |  |  |
| 1.0 Watt ( $70^{\circ} \mathrm{C}$ ) <br> MILITARY NUMBERING SYSTEM | MOD POT* | 154 | 1-5/32 (1.156) Inch (29,36 mm) Diameter - <br> Bridged-T-Pads 5 Watts ( $70^{\circ} \mathrm{C}$ ) <br> Bridged-H-Pads 5 Watts $\left(70^{\circ} \mathrm{C}\right)$ <br> L-Pads 2.25 Watts $\left(70^{\circ} \mathrm{C}\right)$ <br> Straight-T-Pads 2.25 Watts $\left(70^{\circ} \mathrm{C}\right)$ | Type J | 188 |
| TRIMMING POTENTIOMETERS |  |  |  |  |  |
| CERMET SINGLE TURN |  |  | TERMS AND CONDITIONS OF SALE |  | 200 |
| Round Configuration |  |  |  |  |  |
| 3/8 (0.375) Inch (9,52 mm) Diameter 0.5 Watt ( $85^{\circ} \mathrm{C}$ ) | Type S | 160 | ALLEN-BRADLEY SALES OFFICES |  | 203 |
| $\begin{aligned} & \text { 0.467 Inch }(11,9 \mathrm{~mm}) \text { by } \\ & \text { 0.393 Inch }(10,0 \mathrm{~mm})- \\ & \text { 0.5 Watt }\left(70^{\circ} \mathrm{C}\right) \\ & \text { 1.0 Watt }\left(40^{\circ} \mathrm{C}\right) \end{aligned}$ | Type 90 | 163 | ALLEN-BRADLEY SALES OFFICES - INTERNATIONAL |  | 206 |
| HOT-MOLDED COMPOSITION SINGLE TURN |  |  |  |  |  |
| Round Configuration |  |  |  |  |  |
| $1 / 2$ (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.25 Watt ( $70^{\circ} \mathrm{C}$ ) | Type F | 166 |  |  |  |
| $1 / 2(0.5)$ Inch $(12,70 \mathrm{~mm})$ Diameter - 0.25 Watt $\left(50^{\circ} \mathrm{C}\right)$ | Type Y | 177 |  |  |  |
| 1/2 (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.25 Watt ( $50^{\circ} \mathrm{C}$ ) | mType BT | 192 |  |  |  |
| $1 / 2(0.5)$ Inch ( $12,70 \mathrm{~mm}$ ) Diameter (Dual) -0.25 Watt $\left(70^{\circ} \mathrm{C}\right)$ | Type FD | 181 |  |  |  |

I Suited for adjustable attenuator applications.
Details in adjustable attenuator section.

| FIXED RESISTORS |  | TRIMMING POTENTIOMETERS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Product Description | Publication Reference 11 Number | Page <br> No. | Type | Product Description | Publication Reference $\square$ Number | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| BB | Hot-Molded (RCR05) | EC5021-2.1 | 10 | F | Hot-Molded, Single Turn | EC5806-2.1 | 166 |
| CB | Hot-Molded (RCR07) | EC5021-2.1 | 10 | N | Hot-Molded, Multi-Turn | EC5815-2.1 | 170 |
| EB | Hot-Molded (RCR20) | EC5021-2.1 | 10 | R | Hot-Molded, Multi-Turn | EC5820-2.1 | 173 |
| GB | Hot-Molded (RCR32) | EC5021-2.1 | 10 | S | Cermet, Single Turn | EC5720-2.1 | 160 |
| GM | Metal Clad Hot-Molded | EC5021-2.1 | 16 | Y | Hot-Molded, Single Turn | EC5828-2.1 | 177 |
| HB | Hot-Molded (RCR42) | EC5021-2.1 | 10 | a BT | Hot-Molded, Single Turn | EC5920-2.1 | 192 |
| HM | Metal Clad Hot-Molded | EC5021-2.1 | 16 | (a) FD | Hot-Molded, Single Turn, Dual | EC5838-2.1 | 181 |
| RESISTOR NETWORKS |  |  |  | 90 | Cermet, Single Turn | EC5770-2.1 | 163 |
| Type | Product Description | Publication Reference Number | $\begin{array}{\|c} \text { Page } \\ \text { No. } \end{array}$ | ADJUSTABLE ATTENUATORS |  |  |  |
| Series FN | Custom Precision (Thin Film) | EC5510-2.1 | 41 | Type | Product Description | Reference Number | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ |
| $\begin{gathered} \text { Series } \\ \text { FN207 } \\ \text { FNPC207 } \end{gathered}$ | Standard Voltage Divider (Precision Thin Film) | EC5515-2.1 | 51 | J | Hot-Molded <br> Bridged-T-Pads (5 watts) <br> Bridged-H•Pads (5 watts) | EC5910-2.1 | 188 |
| $\begin{gathered} \text { Series } \\ 100-400 \end{gathered}$ | Cermet (Thick Film) | EC5420-2.1 | 59 |  | L.Pads ( 2.25 watts) <br> Straight-T-Pads ( 2.25 watts) |  |  |
| $\begin{gathered} \text { Series } \\ 314-316 \end{gathered}$ | $\begin{aligned} & \text { Cermet } \\ & \text { (Thick Film) } \end{aligned}$ | EC5410-2.1 | 63 | BT | Hot-Molded <br> Bridged-T-Pads ( 0.25 watt) | EC5920-2.1 | 192 |
| PANEL POTENTIOMETERS |  |  |  | FD | Hot-Molded <br> Bridged-T-Pads ( 0.5 watt) <br> L-Pads ( 0.25 watt) | EC5930-2.1 | 196 |
| Type | Product Description | Publication <br> Reference 1 Number | $\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$ | GD | Hot-Molded <br> Bridged-T-Pads (1 watt) <br> L-Pads ( 0.5 watt) | EC5930-2.1 | 196 |
| G | Hot-Molded ( 0.5 watt) | EC5605-2.1 | 83 | mod Pote | Hot-Molded | EC5670-2.1 | 142 |
| [ J | Hot-Molded (2.25 watts) | EC5607-2.1 | 91 |  | Bridged-T-Pads (1 watt) |  |  |
| K | Hot-Molded (3 watts) | EC5608-2.1 | 100 |  | Bridged-H•Pads (1 watt) L-Pads ( 0.5 watt) |  |  |
| L | Hot-Molded ( 0.8 watt) | EC5609-2.1 | 108 |  | Straight-T-Pads (0.5 watt) |  |  |
| M | Conductive Plastic (0.1 watt) | EC5610-2.1 | 114 |  |  |  |  |
| w | Hot-Molded (0.5 watt) | EC5612-2.1 | 118 |  |  |  |  |
| EJ | Hot-Molded (Extra Life) | EC5620-2.1 | 124 | Separate copies of individual product Technical Publications are available. Please order by noted Publication number(s) from Catalog Service Department. |  |  |  |
| 日 GD | Hot-Molded (0.5 watt) | EC5630-2.1 | 128 |  |  |  |  |
| SP | Cermet (1 watt) | EC5640-2.1 | 132 | 12 Suited for adjustable attenuator applications. Details in adjustable attenuator section. |  |  |  |
| WR | Hot-Molded ( 0.5 watt) | EC5650-2.1 | 136 |  |  |  |  |
| Series 70 MOD POT | Hot-Molded, Cermet Conductive Plastic, Metal Shaft and Bushing | EC5670-2.1 | 142 |  |  |  |  |
| Series 72 MOD POT | Hot-Molded, Cermet Conductive Plastic, Plastic Shaft and Bushing | EC5670-2.1 | 142 |  |  |  |  |
| Series 73 MOD POT | Hot-Molded, Cermet Conductive Plastic, Metal Shaft and Metal Bushing Molded into Plastic Face Plate | EC5670-2.1 | 142 |  |  |  |  |

by type identification and product category

| Type | Product Category | Page <br> No. | Type | Product Category | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F | Trimming Potentiometer | 166 | FN | Thin Film Network (Custom) | 41 |
| G | Panel Potentiometer | 83 | GB | Fixed Resistor | 10 |
| J | Panel Potentiometer/Adjustable Attenuator | 91 | GD | Panel Potentiometer/Adjustable Attenuator | 128 |
| K | Panel Potentiometer | 100 | GM | Fixed Resistor | 16 |
| L | Panel Potentiometer | 108 | HB | Fixed Resistor | 10 |
| M | Panel Potentiometer | 114 | HM | Fixed Resistor | 16 |
| N | Trimming Potentiometer | 170 | SP | Panel Potentiometer | 132 |
| R | Trimming Potentiometer | 173 | WR | Panel Potentiometer | 136 |
| S | Trimming Potentiometer | 160 | Series FN207 | Thin Film Networks (Standard | 51 |
| w | Panel Potentiometer | 118 | FNPC207 | Voltage Divider) |  |
| Y | Trimming Potentiometer | 177 | Series 70 | Panel Potentiometer/Adjustable Attenuator | 142 |
| BB | Fixed Resistor | 10 | Series 72 | Panel Potentiometer/Adjustable | 142 |
| BT | Adjustable Attenuator/Trimming Potentiometer | 192 |  |  |  |
| CB | Fixed Resistor | 10 | Series 73 | Panel Potentiometer/Adjustable Attenuator | 142 |
| EB | Fixed Resistor | 10 | 90 | Trimming Potentiometer | 163 |
| EJ | Panel Potentiometer | 124 | Series | Thick Film Networks | 59 |
| FD | Trimming Potentiometer/ Adjustable Attenuator | 181 | 100-400 |  |  |
|  |  |  | $\begin{gathered} \text { Series } \\ 314-316 \end{gathered}$ | Thick Film Networks | 63 |

publication reference to product type and category

| Publication <br> Reference Number | Type/Product Category | Publication Reference Number | Type/Product Category |
| :---: | :---: | :---: | :---: |
| EC5021-2.1 | Type BB, CB, EB, GB, HB, GM, HM, Fixed Resistors (Hot-Molded) | EC5640-2.1 | Type SP, Panel Potentiometer |
|  |  | EC5650-2.1 | Type WR, Panel Potentiometer |
| EC5410-2.1 | Series 314-316, Thick Film Networks | EC5670-2.1 | Series 70, 72, 73 Panel Potentiometers/ |
| EC5420-2.1 | Series 100-400, Thick Film Networks |  |  |
| EC5510-2.1 | Series FN, Thin Film Network | EC5720-2.1 | Type S, Trimming Potentiometer |
| EC5515-2.1 | Series FN207, FNPC207, Thin Film Networks (Standard Voltage Divider) | EC5770-2.1 | Type 90, Trimming Potentiometer |
|  |  | EC5806-2.1 | Type F, Trimming Potentiometer |
| EC5605-2.1 | Type G, Panel Potentiometer | EC5815-2.1 | Type N, Trimming Potentiometer |
| EC5607-2.1 | Type J, Panel Potentiometer | EC5820-2.1 | Type R, Trimming Potentiometer |
| EC5607-2.2 | Type J, Panel Potentiometer/Vernier | EC5828-2.1 | Type Y, Trimming Potentiometer |
| EC5608-2.1 | Type K, Panel Potentiometer | EC5838-2.1 | Type FD, Trimming Potentiometer/ |
| EC5609-2.1 | Type L, Panel Potentiometer |  | Adjustable Attenuator |
| EC5610-2.1 | Type M, Panel Potentiometer | EC5910-2.1 | Type J, Adjustable Attenuator |
| EC5612-2.1 | Type W, Panel Potentiometer | EC5920-2.1 | Type BT, Adjustable Attenuator/Trimming |
| EC5620-2.1 | Type EJ, Panel Potentiometer |  | Potentiometer |
| EC5630-2.1 | Type GD, Panel Potentiometer/ Adjustable Attenuator | EC5930-2.1 | Type FD, GD, Adjustable Attenuators |

## Hot-molded resistors provide low temperature coefficient and unmatched reliability.

The Resistance Temperature Coefficient of Allen-Bradley hot-molded fixed resistors is typically less than 200 PPM over the entire resistor range shown in the normal equipment operating temperature of $+15^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Excellent RTC ratings have always been an Allen-Bradley benefit. And consistency of Allen-Bradley resistors means repeatable results and tight performance patterns. Allen-Bradley resistors offer the lowest cost-on the board-where it counts!



## Reliabrelty

is unsurpassed. Over 950 million unit test hours without a single failure.

Nocoatings
Insulation and resistance element integrally molded into one solid structure.

## Pulsehandling

characteristics offer outstanding protection against surges and transients.


## Quality in the best tradition.



## HOT-MOLDED COMPOSITION

comprehensive product index

| DESCRIPTION | TYPE | PAGE |
| :---: | :---: | :---: |
| HOT-MOLDED COMPOSITION |  |  |
| [Hot-Molded Composition |  |  |
| 1/8 Watt at $70^{\circ} \mathrm{C}$ RCR05 | Type BB | 10 |
| $1 / 4$ Watt at $70^{\circ} \mathrm{C}$ RCR07 | Type CB | 10 |
| $1 / 2$ Watt at $70^{\circ} \mathrm{C}$ RCR20 | Type EB | 10 |
| 1 Watt at $70^{\circ} \mathrm{C}$ RCR32 | Type GB | 10 |
| 2 Watts at $70^{\circ} \mathrm{C}$ RCR42 | Type HB | 10 |
| Metal Clad (Copper) Hot-Molded Composition |  |  |
| 3 Watts at $70^{\circ} \mathrm{C}$ | Type G | 16 |
| 4 Watts at $40^{\circ} \mathrm{C}$ | Type | 16 |
| 4 Watts at $70^{\circ} \mathrm{C}$ | Type HM | 16 |
| 5 Watts at $40^{\circ} \mathrm{C}$ | Type HM |  |
| $\square$ Reel Packaged |  |  |
| Lead Tape |  | 17 |
| Body Tape |  | 17 |
| Additional Data |  |  |
| Application Information |  | 19 |
| Standard Resistance Values |  | 20 |
| Evaluation Tests for Hot-Molded Composition Resistors |  | 25 |
| MILITARY NUMBERING SYSTEM |  | 33 |
| 1 HOT-MOLDED COMPOSITION |  |  |
| RESISTORS, IN STANDARD RESISTANCE |  |  |
| VALUES, ARE AVAILABLE FROM STOCK |  |  |
| AT ELECTRONIC DISTRIBUTORS. |  |  |
| 2 NOT AVAILABLE FROM ELECTRONIC DISTRIBUTORS. |  |  |
| 3 REEL PACKAGING CAN B THROUGH ELECTRONIC DISTRIBUTORS. | RDERE |  |

# fixed resistors 



## NOT TO SCALE

Approved: Allen-Bradley Style RCR resistors not only meet all requirements of MIL-R-39008 but also exceed the S level (best level) of Established Reliability of $0.001 \%$ failure rate per 1000 hours. And only Allen-Bradley resistors are available in S level reliabiity in all five wattage sizes over the entire resistance range. The $S$ reliability level is indicated by a yellow 5 th color band on the resistor body.

## SELECTOR GUIDE

| Type | $\begin{gathered} \text { Power } \\ \text { at } 70^{\circ} \mathrm{C} \end{gathered}$ | Resistance Range | Tolerance | Voltage Rating (RMS) | Maximum Ambient Temperature | Dimensions In Inches (millimeters) |  |  |  |  |  |  | Page No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | A | B | C | D | E | F | G |  |
| Hot-Molded |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BB | 1/86 Watt | 2.7 Ohms to 100 Megohms | $\pm 5,10,20 \%$ | 150 V | $+130^{\circ} \mathrm{C}$ | $\begin{aligned} & 0.145 \\ & (3,68) \end{aligned}$ | $\begin{aligned} & 0.062 \\ & (1,59) \end{aligned}$ | $\begin{gathered} 1.000 \\ (25,40) \end{gathered}$ | $\begin{aligned} & 0.015 \\ & (0,38) \end{aligned}$ |  |  |  | 10 |
| RCR05 |  | 2.7 Ohms to 22 Megohms | $\pm 5,10 \%$ |  |  |  |  |  |  |  |  |  |  |
| CB | 1/4 Watt | 2.7 Ohms to 100 Megohms | $\pm 5,10,20 \%$ | 250 V | $+150^{\circ} \mathrm{C}$ | 0.250 | 0.090 | 1.500 | 0.025 |  |  |  | 10 |
| RCR07 |  | 2.7 Ohms to 22 Megohms | $\pm 5,10 \%$ |  |  | $(6,35)$ | $(2,29)$ | $(38,10)$ | $(0,64)$ |  |  |  | 10 |
| EB | 1/2 Watt | 1.0 Ohm to 100 Megohms | $\pm 5,10,20 \%$ | 350 V |  | 0.375 | 0.140 | 1.500 | 0.033 |  |  |  | 10 |
| RCR20 |  | 1.0 Ohm to 22 Megohms | $\pm 5,10 \%$ |  |  | $(9,52)$ | $(3,56)$ | $(38,10)$ | $(0,84)$ |  |  |  | 10 |
| GB | 1 Watt | 1.0 Ohm to 100 Megohms | $\pm 5,10,20 \%$ | 500 V |  | $0.562$ | $0.225$ | $1.500$ | $0.041$ |  |  |  | 10 |
| RCR32 |  | 2.7 Ohms to 22 Megohms | $\pm 5,10 \%$ |  |  | $(14,29)$ | $(5,72)$ | $(38,10)$ | $(1,04)$ |  |  |  | 10 |
| HB | 2 Watts | 10 Ohms to 100 Megohms | $\pm 5,10,20 \%$ | 750 V |  | 0.688 | 0.312 | 1.500 | $0.045$ |  |  |  | 10 |
| RCR42 |  | 10 Ohms to 22 Megohms | $\pm 5,10 \%$ | 500 V |  | $(17,46)$ | $(7,94)$ | $(38,10)$ | $(1,14)$ |  |  |  | 10 |
| GM | 3 Watts | 2.7 Ohms to 22 Megohms | $\pm 5,10 \%$ | 500 V |  | $\begin{array}{\|c\|} \hline 0.562 \\ (14,29) \end{array}$ | $\begin{aligned} & 0.225 \\ & (5,72) \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline 1.500 \\ (38,10) \\ \hline \end{array}$ | $\begin{aligned} & 0.041 \\ & (1,04) \end{aligned}$ | $\begin{aligned} & 0.305 \\ & (7,75) \\ & \hline \end{aligned}$ | $\begin{gathered} 0.438 \\ (11,11) \end{gathered}$ | $\begin{array}{\|c\|} \hline 0.656 \\ (16,67) \end{array}$ | 16 |
| HM | 4 Watts | 10 Ohms to 22 Megohms |  | 750 V |  | $\begin{array}{\|c\|} \hline 0.688 \\ (17,46) \end{array}$ | $\begin{aligned} & 0.312 \\ & (7,94) \end{aligned}$ | $\begin{gathered} 1.500 \\ (38,10) \end{gathered}$ | $\begin{aligned} & 0.045 \\ & (1,14) \end{aligned}$ | $\begin{aligned} & 0.391 \\ & (9,92) \end{aligned}$ | $\begin{gathered} 0.562 \\ (14,29) \end{gathered}$ | $\begin{gathered} \hline 0.766 \\ (19,45) \end{gathered}$ | 16 |

## DIMENSIONS

## HOT-MOLDED


(Types BB-CB-EB-GB-HB)

 Resistors

$1 / 8,1 / 4,1 / 2,1$, and 2 Watts ( $70^{\circ} \mathrm{C}$ ) 1 Ohm to 1 Teraohm

$\pm 5 \%, \pm 10 \%$, and $\pm 20 \%$ Tolerance

## FEATURES

- Reliable
- Uniform Quality
- Predictable Performance
- Conservative Ratings
- Rugged Construction


## Outstanding characteristics

Uniform quality - Consistent performance for over 35 years, no difference in quality regardless of value, rating or tolerance purchased: One grade the finest.
Reliable - Recognized as the most reliable of all electronic components, Allen-Bradley hot-molded resistors provide freedom from catastrophic failure when used within ratings.
Predictable performance - Because of their outstanding uniformity, Allen-Bradley hot-molded resistors exhibit consistent responses to environment and loading.
Conservative ratings - All performance specifications are based on extensive testing and massive field experience.
Rugged construction - The solid, integral structure, combining leads, insulation, and resistance material in the exclusive Allen-Bradley hot-molding process provides exceptional strength and resistance to damage in automatic handling machinery.
Wide range of values - Available in standard preferred number values from 1 ohm to 100 megohms. Special values available on request.
High resistance values - Resistance values from 100 megohms to 1 million megohms ( 1 teraohm) are available on special order, in Types BB, CB, and EB.

Solderable/weldable leads - Hot solder coated leads remain easy to solder even after long periods in stock. The oxygen-free copper leads are readily weldable and allow considerable weld-schedule latitude. Stocking of resistors with two different lead materials is unnecessary.
Tracking - Allen-Bradley resistors exhibit extremely uniform tracking characteristics. For example, in flip-flop circuits, resistors used in pairs which are drawn from the same package or reel (a normal mass production practice) will track with each other throughout changes of temperature, humidity, and load. This assures reliable circuit performance throughout the design life of the equipment.
Durable color coding - Baked-on color code paints are resistant to solvents, and also resist the abrasion and chipping associated with automatic handling. They remain bright and easily readable even after long periods of use.
Temperature stable - Between $0^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, Allen-Bradley hot-molded resistors exhibit a very low temperature characteristic, typically less than two percent deviation from room temperature values, less in low resistance values.

All measurements made at room temperature except during Temperature Characteristics Test and Load Life Test.

For specific conditions such as mounting, test procedures, sequence of tests, etc., refer to AllenBradley Publication EC5021-2.2. Applicable test procedure numbers are listed in brackets [ ] below.

| Characteristics |  | Hot-Molded Fixed Resistors |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1/8 Watt Type BB | 1/4 Watt Type CB | $\begin{aligned} & 1 / 2 \text { Watt } \\ & \text { Type EB } \end{aligned}$ | 1 Watt Type GB | 2 Watt Type HB |
| Standard Resistance Range <br> Nominal EIA and MIL Values (See Page 20) |  | 2.7 ohms to 100 megohms | 2.7 ohms to 100 megohms | 1.0 ohm to 100 megohms | 1.0 ohm to 100 megohms | 10 ohms to 100 megohms |
| Standard Tolerances |  | $\begin{gathered} \pm 5 \%, \pm 10 \% \\ \pm 20 \% \end{gathered}$ | $\begin{gathered} \pm 5 \%, \pm 10 \% \\ \pm 20 \% \\ \hline \end{gathered}$ | $\begin{gathered} \pm 5 \%, \pm 10 \% \\ \pm 20 \% \\ \hline \end{gathered}$ | $\begin{gathered} \pm 5 \%, \pm 10 \% \\ \pm 20 \% \end{gathered}$ | $\begin{gathered} \pm 5 \%, \pm 10 \% \\ \pm 20 \% \end{gathered}$ |
| Power Rating Maximum continuous rated watts at $70^{\circ} \mathrm{C}$ ambient based on Load Life Test [6.12] |  | 0.125 watt | 0.25 watt | 0.5 watt | 1.0 watt | 2.0 watts |
| Rated Continuous Working Voltage (RCWV) <br> Based on nominal resistance ( R ) in ohms. |  | $\sqrt{0.125 \times \mathrm{R}}$ <br> or 150 volts, whichever is less. | $\sqrt{0.25 \times R}$ or 250 volts, whichever is less | $\sqrt{0.5 \times \mathrm{R}}$ or 350 volts. whichever is less. | $\sqrt{1.0 \times R}$ or 500 volts, whichever is less. | $\sqrt{2.0 \times R}$ or 750 volts, whichever is less. |
| Maximum Ambient Temperature Power rating derated linearly to zero at this temperature |  | $+130^{\circ} \mathrm{C}$ | $+150^{\circ} \mathrm{C}$ | $+150^{\circ} \mathrm{C}$ | $+150^{\circ} \mathrm{C}$ | $+150^{\circ} \mathrm{C}$ |
| Weight (Approximate) | Resistor with nominal length leads | 0.077 gm | 0.28 gm | 0.61 gm | 1.45 gm | 280 gm |
|  | Leads (per millimeter) | $1.2 \mathrm{mg} / \mathrm{mm}$ | $2,9 \mathrm{mg} / \mathrm{mm}$ | $5.0 \mathrm{mg} / \mathrm{mm}$ | $8,0 \mathrm{mg} / \mathrm{mm}$ | $9.4 \mathrm{mg} / \mathrm{mm}$ |

11 MIL R. 39008 B Resistance Range
2.7 ohms to 22 megohms for $1 / 8,14$, and 1 watt

1 ohm to 22 megohms for $1 / 2$ watt
10 ohms to 22 megohms for 2 watts

## Performance characteristics

| Characteristics |  |  | Hot-Molded Fixed Resistors |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1. Watt Type BB | $\begin{aligned} & 1 / 4 \text { Watt } \\ & \text { Type CB } \end{aligned}$ | $\begin{aligned} & \text { 1/2 Watt } \\ & \text { Type EB } \end{aligned}$ | $\begin{aligned} & 1 \text { Watt } \\ & \text { Type GB } \end{aligned}$ | 2 Watt Type HB |
| Insulation Resistance [6.6] Minımum |  |  | 10,000 megohms |
| Dielectric Withstanding Voltage [6.5] | At Sea Level Atmospheric Press. |  | 300 volts | 500 volts | 700 volts | 1000 volts | 1500 volts |
|  | At $3.4^{*}(86,36 \mathrm{~mm}) \mathrm{Hg}$ (Simulated $50,000 \mathrm{ft}$ - [15240 meters]) |  | 200 volts | 325 volts | 450 volts | 625 volts | 625 volts |
| Resistance-Voltage Coefficient (6.4] Maximum instantaneous change in resist ance per voli based on $\Delta R$ for $\Delta V$ of (1.0-0.1) RCWV. <br> Nominal Resistance |  | 10 K | $-0.020 \% \mathrm{~s} / \mathrm{volt}$ | - 0.015\%/volt | $-0.010 \% / v o l t$ | $-0.0074 . / \mathrm{volt}$ | - 0.010\%/volt |
|  |  | 100K | $-0.030$ | -0.020 | $-0.015$ | $-0.012$ | -0.015 |
|  |  | 1 Meg | $-0.045$ | $-0.025$ | $-0.020$ | $-0.015$ | $-0.020$ |
|  |  | 10 Meg | $-0.050$ | $-0.030$ | $-0.030$ | $-0.020$ | $-0.020$ |
|  |  | 22 Meg | $-0.050$ | $-0.035$ | $-0.035$ | $-0.020$ | $-0.020$ |
|  |  | 100 Meg | -0.055 | $-0.035$ | -0.035 | $-0.025$ | -0.025 |
| Load Life [6.12] <br> 1000 hours operating at RCWV at $70^{\circ} \mathrm{C}$ ambient for duty cycle of 1 \% hour "on", /2 hour "of" Permanent re sistance change. |  | Maximum | $\begin{aligned} & +4 \\ & -6 \end{aligned}$ | +4 -6 | +4 -6 | +4 -6 | $\begin{aligned} & +4 \\ & -6 \end{aligned}$ |
|  |  | Typical | -3\% | - 3\% | $-3 \%$ | -3\% | -3n |
| Load Life (temperature-derated) 1000 hours ( $1 / 2$ hour "on", $\%$ hour "off") at RCWV derated per temperature according to chart on Page 13. Tested at temperatures between $70^{\circ} \mathrm{C}$ and maximum ambient temperature. Permanent resistance change $\mathbf{6 . 1 2}$ modified with respect to volt age applied, as described above. \| |  | Maximum | +4 -6 | +4, -6. | +4 -6. | +4 -6 | +4 -6. |
|  |  | Typical | $-431$ | $-45$ | $-45$ | $-4 \%$. | $-4 \mathrm{r}$ |

## Types BB,CB, EB, GB

HB, GM, HM

## Performance characteristics

| Characteristics |  |  | Hot-Molded Fixed Resistors |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1/s Watt Type BB | $\begin{aligned} & 1 / 4 \text { Watt } \\ & \text { Type CB } \end{aligned}$ | $\begin{aligned} & 1 / 2 \text { Watt } \\ & \text { Type EB } \end{aligned}$ | 1 Watt Type GB | 2 Watt Type HB |
| Short-Time Overload [6,11] <br> 5 seconds at $21 / 2$ times RCWV; voltage limit as stated. Maximum permanent resistance change. |  | Voltage Limits | 200 volts | 400 volts | 700 volts | 1000 volts | 1000 volts |
|  |  | Maximum | $\pm(2.5 \%+0.05$ ohm $)$ | $\pm(2 \%+0.05 \mathrm{ohm})$ | $\pm(1 \%+0.05 \mathrm{ohm})$ | $\pm(1 \%+0.05 \mathrm{ohm})$ | $\pm(1 \%+0.05 \mathrm{ohm})$ |
|  |  | Typical | $+0.5 \%$ | $+0.5 \%$ | +0.5\% | + 0.5\% | + 0.5\% |
| Terminal Strength [6.13] $5 \mathrm{lb} .(2,27 \mathrm{Kgm})$ Pull Test. Three turn Twist Test. Maximum permanent resistance change. |  |  | $\pm(1 \%+0.05 \mathrm{ohm})$ $(2 \mathrm{lb}$. Pull Test $)$ $(0.91 \mathrm{Kgm})$ | $\pm(1 \%+0.05 \mathrm{ohm})$ | $\pm(1 \%+0.05 \mathrm{ohm})$ | $\pm(1 \%+0.05 \mathrm{ohm})$ | $\pm(1 \%+0.05 \mathrm{ohm})$ |
| Effect of Solder Heat [6.14] <br> Leads immersed to .125 in . $(3,18 \mathrm{~mm})$ of body in $350^{\circ} \mathrm{C}$ solder for 3 seconds. Maximum permanent resistance change. |  |  | $\begin{gathered} \pm(2 \%+0.05 \mathrm{ohm}) \\ \left(250^{\circ} \mathrm{C} \text { Solder }\right) \end{gathered}$ | $\pm(2 \%+0.05 \mathrm{ohm})$ | $\pm(3 \%+0.05 \mathrm{ohm})$ | $\pm(3 \%+0.05 \mathrm{ohm})$ | $\pm(3 \%+0.05 \mathrm{ohm})$ |
| Vibration [6.17] $10.2000 \mathrm{~Hz}, 0.06$ inch $(1,52 \mathrm{~mm})$ peak-to-peak or 20 G , whichever is less. | Mechanical or Electrical Damage |  | No Damage |
|  | Maximum Permanent Resistance Change |  | $\pm(1 \%+0.05 \mathrm{ohm})$ | $\pm(1 \%+0.05$ ohm $)$ | $\pm(1 \%+0.05 \mathrm{ohm})$ | $\pm(1 \%+0.05 \mathrm{ohm})$ | $\pm(1 \%+0.05 \mathrm{ohm})$ |
| Shock [6.16] <br> $100 \mathrm{~g}, 6 \mathrm{~ms}$, sawtooth, 10 shocks, 2 planes. | Mechanical or Electrical Damage |  | No Damage |
|  | Maximum Permanent Resistance Change |  | $\pm(2 \%+0.05 \mathrm{ohm})$ |
| Moisture Resistance [6.9] <br> Temporary resistance change. See comment on Page 14 | Maximum |  | +15 -0 | $+12 \%$ -0 | $\begin{aligned} & +14 \% \\ & -0 \end{aligned}$ | $+8 \%$ <br> $-0 \%$ | $+7 \%$ <br> $-0 \%$ |
|  | Typical |  | +9\% | + $6 \%$ | + 7\% | + $5 \%$ | + 4\% |
| Humidity Characteristic (steady state) [6.10] <br> 240 hours at $+40^{\circ} \mathrm{C}$ and $95 \%$ relative humidity. Tem porary resistance change. <br> Nominal Resistance (ohms) | 10 | Maximum | $+8{ }_{6}$ $-0{ }^{5}$ | +5 <br> $-0 \%$ | $+4 \%$ <br> $-0 \%$ | $+3 \%$ <br> -06 | $+3 \%$ <br> $-0 \%$ |
|  |  | Typical | + 4\% | + 3\% | + $2 \%$ | + $2 \%$ | + 1\% |
|  | 1000 | Maximum | $+9 \%$ -00 | $+6 \%$ <br> $+0 \%$ | $+6 \%$ <br> -0 | $+4 \%$ <br> $-0 \%$ | $+4{ }^{4}$ -0 |
|  |  | Typical | + $5 \%$ | + 4\% | + 4\% | + $2 \%$ | + $2 \%$ |
|  | 100K | Maximum | $+11 \%$ +0 | $+9 \%$ <br> -00 | $+8{ }^{2}$ -0 | $+5 \%$ <br> $-0 \%$ | $+5 \%$ -0 |
|  |  | Typical | + 8\% | + $6 \%$ | +6\% | + 3\% | $+2.5 \%$ |
|  | 10 Meg . and 100 Meg . | Maximum | +13 +0 | $+10 \%$ $-0 \%$ | $+9 \%$ $-0 \%$ | $+5{ }_{\text {q }}$ -0 | +5 $-0 \%$ |
|  |  | Typical | $+9 \%$ | + 8\% | $+7 \%$ | +3\% | +2.5\% |
| Low Temperature Operation [6.7] After 1 hour at $-65,+0-5^{\circ} \mathrm{C}$, apply RCWV for 45 minutes. Remove RCWV, return to room temperature, Resistance change measured 24 hours after test. |  | Maximum | $\pm(2 \%+0.05 \mathrm{ohm})$ | $\pm(2 \%+0.05 \mathrm{ohm})$ | $\pm(2 \%+0.05$ ohm) | $\pm(2 \%+0.05$ ohm $)$ | $\pm(2 \%+0.05 \mathrm{ohm})$ |
|  |  | Typical | $+0.5 \%$ | + 0.5\% | $+0.5 \%$ | + $0.5 \%$ | + 0.5\% |
| $\begin{aligned} & \text { Temperature Cycling [6.8] } \\ & \text { Limits: }-55^{\circ} \mathrm{C} \text { and }+85^{\circ} \mathrm{C} \text {. } \\ & \text { Resistance change after five cycles. } \end{aligned}$ |  | Maximum | $\pm(2 \%+0.05 \mathrm{ohm})$ | $\pm(2 \%+0.05$ ohm $)$ | $\pm(2 \%+0.05 \mathrm{ohm})$ | $\pm(2 \%+0.05 \mathrm{ohm})$ | $\pm(2 \%+0.05 \mathrm{ohm})$ |
|  |  | Typical | +0.5\% | + 0.5\% | +0.5\% | +0.5\% | $+0.5 \%$ |

## Temperature characteristics

In addition to the maximum values given in this table, typical curves of temporary resistance change due to temperature are illustrated at the top of the next page.

| Resistance Temperature Characteristic [6.3] | $-55^{\circ} \mathrm{C}$ | $-25^{\circ} \mathrm{C}$ | $-15^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $+25^{\circ} \mathrm{C}$ | $+55^{\circ} \mathrm{C}$ | $+65^{\circ} \mathrm{C}$ | $+85^{\circ} \mathrm{C}$ | $+105^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Range <br> (\%) | Range <br> (\%) | Range <br> (\%) | Range <br> (\%) | Nominal Ohms | Range <br> (\%) | Range <br> (\%) | Range <br> (\%) | Range <br> (\%) |
|  | +0.2 to +2.6 | -0.2 to +1.3 | -0.2 to +1.0 | -0.2 to +0.6 | 1 | -0.4 to +0.5 | -0.5 to +0.7 | -0.5 to +1.3 | -0.4 to +2.0 |
|  | +0.2 to +3.8 | -0.3 to +2.0 | -0.3 to +1.5 | -0.3 to +0.9 | 10 | -0.6 to +0.8 | -0.7 to +1.1 | -0.8 to +2.0 | -0.6 to +3.0 |
| Maximum temporary resistance change from the $+25^{\circ} \mathrm{C}$ initial resistance value. Note - Linear inter polation approximates intermediate values. | +0.3 to +5.1 | -0.3 to +2.7 | -0.4 to +2.0 | -0.4 to +1.1 | 100 | -0.8 to +1.0 | -0.9 to +1.5 | -1.0 to +2.6 | -0.8 to +4.0 |
|  | +0.3 to +6.4 | -0.4 to +3.4 | -0.5 to +2.5 | -0.5 to +1.4 | 1000 | -1.0 to +1.3 | -1.2 to +1.8 | -1.3 to +3.3 | -1.0 to +5.0 |
|  | +0.4 to +7.7 | -0.5 to +4.0 | -0.6 to +3.0 | -0.6 to +1.7 | 10K | -1.2 to +1.5 | -1.4 to +2.2 | -1.5 to +3.9 | -1.2 to +6.0 |
|  | +0.5 to +8.9 | -0.6 to +4.7 | -0.7 to +3.5 | -0.7 to +2.0 | 100K | -1.4 to +1.8 | -1.6 to +2.6 | -1.8 to +4.6 | -1.4 to +7.1 |
|  | +0.5 to +10.2 | -0.7 to +5.4 | -0.9 to +4.0 | -0.8 to +2.3 | 1 Meg | -1.6 to +2.0 | -1.9 to +3.0 | -2.0 to +5.2 | -1.6 to +8.1 |
|  | +0.6 to +11.5 | -0.8 to +6.0 | -0.9 to +4.5 | -0.9 to +2.6 | 10 Meg | -1.8 to +2.3 | -2.1 to +3.3 | -2.3 to +5.9 | -1.8 to +9.1 |
|  | +0.6 to +11.9 | -0.8 to +6.3 | -0.9 to +4.7 | -0.9 to +2.6 | 22 Meg | -1.9 to +2.4 | -2.2 to +3.5 | -2.4 to +6.1 | -1.9 to +9.4 |
|  | +0.7 to +12.8 | -0.8 to +6.7 | -1.0 to +5.0 | -0.9 to +2.8 | 100 Meg | -2.0 to +2.5 | -2.4 to +3.7 | -2.5 to +6.6 | -2.0 to +10.1 |

## Typical resistance - temperature characteristics



Percent Resistance Deviation From $25^{\circ} \mathrm{C}$ Value for Various Nominal Resistance Values and Temperatures.

Derating with respect to ambient temperature


Derating - For resistors operated in ambient temperatures above $70^{\circ} \mathrm{C}$, the change in resistance after 1000 hours under conditions similar to the Load Life Test will be less than $+4 \%$ to $-6 \%$ when the load wattage is derated in accordance with the curve shown. The most significant factor in proper derating to achieve minimal permanent resistance change over long periods of operation is the resultant surface temperature of the resistor. (See note 7 under Application Information.)


Resistor test voltages - In measuring resistance, it is important to take into account the effects of heating due to voltage application and the "offset" of resistance due to its voltage coefficient. Maximum voltage coefficients are listed on Page 11 of this publication. The voltage used should be applied for as short a time as possible, to minimize the effect of heating. For reference purposes, the voltages listed below should be used.

## Nominal Resistance Range

## Recommended Test Voltage (DC Volts)

1.0 to 9.1 ohms
10 to 91 ohms
100 to 910 ohms
1000 to 9100 ohms
10 K to 91 K ohms
100 K ohms and higher
0.3 volt
1.0 volt
3.0 volts
10
volts
30
volts
100

Moisture resistance testing - The results obtained from this test, defined in Publication EC5021-2.2 paragraph 6.9 which parallels MIL STD-202 Method 106 have been found to vary because of the involved equipment required, the inclusion of several destruc-tive-type procedures, and the poor reproduceability of the test. Isolation of the effects of moisture on resistors can be better achieved using the Steady State Humidity Test, paragraph 6.10 in Publication EC5021-2.2, paralleled by MIL-STD-202, Method 103. Maximum and typical values of resistance change for both tests are shown in the table on Page 12 of this publication.
Solderability - Allen-Bradley hot-molded fixed resistors meet the solderability requirements of MIL-R-39008 and MIL-STD-202, Method 208.
Resistance to solvents - The color code remains legible after resistors are subjected to the Resistance To Solvents test of MIL-STD-202, Method 215. Also, the resistors will withstand the Color Code Solvent Resistance test described in Paragraph 6.20 of Publication EC5021-2.2, which includes ultrasonically agitated liquids at elevated temperature.
Military qualification - The Allen-Bradley hotmolded fixed resistors meet or exceed all applicable military specifications including MIL-R-39008, Resistors, Fixed, Composition (Insulated), Established Reliability, and are fully qualified in all wattage sizes and all resistance values to the best reliability level,
the " S " level, with a failure rate lower than $0.001 \%$ per 1000 hours.
Resistance measuring techniques - Measured resistance value is dependent upon the resistor temperature, the test voltage, and the degree of resistor dryness. Accurate correlation between repeated measurements, especially at different times, and different locations, requires that these three conditions be essentially the same.
Slight variations in resistor body temperature are not significant in room temperature measurements. However, the temperature of the resistor body may increase appreciably when tested at too high a voltage or when the voltage is applied for too long a time causing excessive heating.
The test voltage is very important and sometimes misunderstood or overlooked. This is because a tester is often unaware of the actual voltage that the instrument used is applying to the resistor under test. Commonly used instruments such as highly accurate resistance bridges or digital voltmeters employ relatively low voltages to make measurements, usually around 1 volt and seldom higher than 10 volts. This does not cause significant differences for low resistance values where the use of low test voltages is specified. However, for higher resistance values such as 100 K ohms or higher, a test voltage of 90 or 100 volts is specified and use of a low voltage test instrument will result in a substantial difference in readings.
It is important to recognize that apparent out-oftolerance on the + side can be caused by excessive moisture, and when such a condition is observed the test sample should then be conditioned in a dry oven as described in Publication EC5021-2.2.
Since both moisture and too low test voltages make the resistance value appear higher than when tested under standard conditions, it can be easily seen how these two effects when combined together may produce a significant measurement difference.
Other A-B hot-molded resistor publications Resistor Test Procedures - Publication EC5021-2.2 covers resistor test procedures and contains a cross index of Allen-Bradley resistor test methods and the equivalent or near-equivalent methods specified in MIL-R-11, MIL-R-39008, MIL-STD-202 and EIA Specification RS-186.

Measurement conditions - The curves below give typical values of impedance to DC resistance ratio and phase angle from 100 KHz to 100 MHz . Care was taken in test fixture design to prevent distributed capacitance to ground along the length of the resistor from contributing to measured values. Lead length was held at one quarter inch to standardize the lead inductance contribution. User's circuit variations from test conditions in mounting position and lead length can have a significant effect on the high frequency characteristics.


## Types $B B, C B, E B, G B$



2 Watt Type HB


2 Watt Type HB

## Metal clad fixed resistors

The Allen-Bradley Type GM and HM resistors are insulated Type GB and HB fixed composition resistors fitted with metal clamps which surround the major portion of the resistor. The metal clamps provide rigid mounting and efficient heat transfer from the resistors to the metal chassis or panels on which they are mounted.
It has been well established that Allen-Bradley fixed composition resistors exhibit superior reliability. When used according to published ratings and recommendations they do not open circuit nor exhibit large erratic changes of resistance value. The standard units are available up to and including 2 watt ratings.
Type GM and HM resistors make this same reliable performance AVAILABLE UP TO AND IN. CLUDING 5 WATTS.
Performance characteristics - The performance characteristics for Types GM and HM are the same as for Types GB and HB respectively, as shown in the tables on pages 11 and 12 , with the following exceptions.
Nominal resistance range -
Type GM -2.7 ohms to 22 megohms
Type HM - 10 ohms to 22 megohms
Standard tolerances - $\pm 5 \%, \pm 10 \%$
Power rating - When mounted on the equivalent of a steel panel 4 inches ( $101,60 \mathrm{~mm}$ ) square and 0.05 inch ( $1,27 \mathrm{~mm}$ ) thick

| Type | $70^{\circ} \mathrm{C}$ Ambient | $40^{\circ} \mathrm{C}$ Ambient |
| :---: | :---: | :---: |
| GM | 3 watts | 4 watts |
| HM | 4 watts | 5 watts |

Rated continuous working voltage (RCWV) -
Type GM $\sqrt{3.0 \times \mathrm{R}}$ or 500 volts, whichever is less Type HM $\sqrt{4.0 \times \mathrm{R}}$ or 750 volts, whichever is less
Weight - Approximate, with nominal length leads Type GM 4.7 gm Type HM 8.0 gm
Insulation resistance - 100,000 megohms minimum between resistor leads and metal clamp
Dielectric withstanding voltage - At sea level, 1500 volts
Short time overload $- \pm(2.5 \%+0.05 \mathrm{ohm})$, maximum
Capacitance - Between resistor leads and metal clamp

Type GM 5.6 pF , approximately
Type HM 9.0 pF , approximately

## Reel packaged resistors

Reel packaged - Allen-Bradley hot-molded fixed resistors may be obtained reel packaged for use directly on automatic assembly equipment.
36 -inch leader - A minimum of 36 inches (914,40 mm ) of free tape are provided at each end of the reel for splicing purposes on lead tape reels. For body tape, a 12 -inch $(304,8 \mathrm{~mm})$ leader at the core and a 36 -inch $(914,40 \mathrm{~mm})$ leader on the outside end.
Heavy duty reel construction - The octagonal reels are made from corrugated fiberboard sides glued to a heavy fiberwound core. The reel is provided with metal bearings having a .562 inch ( $14,27 \mathrm{~mm}$ ) hole.
Expendable - Since these reels are intended to be used as one-time dispensers of resistors, there are no storage problems, no returns.
Note: Long term storage of adhesive taped reelpackaged resistors is not recommended due to normal adhesive aging.


## General requirements

1. Exposed adhesive of tape shall be less than $0.031(0,79)$ in any area where it comes in contact with components or leads.
2. Standard reel packaging is with standard full length component leads. Lead trimming is available upon request for Types CB and EB, such that extension of lead ends beyond outside edges of lead tape is less than $0.031(0,79)$.
3. A maximum of $0.25 \%$ of the components per reel quantity may be missing without consecutive missing components.
4. Cumulative pitch tolerance on " $C$ " dimension shall not exceed $0.059(1,5)$ over six consecutive components.

Tape spacing

| A-B Type | Inside Tape Spacing D $\pm 0.062(1,57)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Class I | Class II | Class III |  |  |
| BB | $\begin{gathered} 1812 \\ (46,04) \end{gathered}$ |  |  |  |  |  |
| CB |  | $\underset{(52,39)}{2.062}$ | $\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$ | $\begin{array}{r} 2.875 \\ (73,03) \end{array}$ | $\begin{gathered} 2,438 \\ (61,93) \end{gathered}$ |  |
| EB |  | $\begin{aligned} & 2.062 \\ & (52,39) \end{aligned}$ | $\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$ | $\begin{gathered} 2.875 \\ (73,03) \end{gathered}$ | $\begin{gathered} 2.438 \\ (61,93) \end{gathered}$ |  |
| GB |  |  |  | $\underset{(73,03)}{2.875}$ | $\begin{gathered} 2.438 \\ (61,93) \end{gathered}$ | $\begin{gathered} 3.062 \\ (77,27) \end{gathered}$ |
| HB |  |  |  | $\underset{(73,03)}{2.875}$ | $\begin{gathered} 2.438 \\ (61,93) \end{gathered}$ | $\begin{gathered} 3.062 \\ (77,77) \end{gathered}$ |

11 Standard
Note: Dimensions shown in parentheses are in millimeters.

## Reel packaging dimensions

| Body Tape |  |  |  |  |  | Across Hubs | Across <br> Flanges | Across <br> Points | Across Flats | Resistor Spacing | Between Hub Holes | Tape Width |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A-B <br> Type | MIL <br> R.11 <br> Style | $\begin{aligned} & \text { MIL. R } \\ & -39008 \\ & \text { Style } \end{aligned}$ | Rating (Watts) | Standard Quanfity (per reel) |  | AA Approx. Inches | B Max. <br> Inches | $\begin{gathered} \text { BB } \\ \text { Max. } \end{gathered}$ Inches |  | Approx. Inches |  |
|  | BB | RC05 | RCR05 | 1/8 | 1000 [ | $\begin{gathered} \hline 2.468 \\ (62,69) \end{gathered}$ | $\begin{gathered} \hline 2.406 \\ (61,11) \end{gathered}$ | $\begin{gathered} 4.062 \\ (103,17) \end{gathered}$ | $\begin{gathered} 3.750 \\ (95,25) \end{gathered}$ | $\begin{gathered} 076 \text { max } \\ (1,93) \end{gathered}$ | $\begin{gathered} 1.593 \\ (40,46) \end{gathered}$ | $\begin{gathered} 125 \\ (3,18) \end{gathered}$ |
|  | BB | RC05 | RCR05 | 1/8 | 4000 [ | $\begin{gathered} 2.468 \\ (62,69) \end{gathered}$ | $\begin{gathered} 2.406 \\ (61,11) \end{gathered}$ | $\begin{gathered} 6.500 \\ (165,10) \end{gathered}$ | $\begin{gathered} 6.000 \\ (152,40) \end{gathered}$ | $\begin{gathered} .076 \text { max } . \\ (1,93) \end{gathered}$ | $\begin{gathered} 1.593 \\ (40,46) \end{gathered}$ | $\begin{gathered} .125 \\ (3,18) \end{gathered}$ |
|  | CB | RC07 | RCR07 | 1/4 | 2500 T | $\begin{gathered} 3.625 \\ (92,08) \end{gathered}$ | $\begin{gathered} 3.562 \\ (90,47) \end{gathered}$ | $\begin{gathered} 6.500 \\ (165,10) \end{gathered}$ | $\begin{gathered} 6.000 \\ (152,40) \end{gathered}$ | $\begin{gathered} .120 \max . \\ (3,05) \end{gathered}$ | $\begin{gathered} 2.750 \\ (69,85) \end{gathered}$ | $\begin{gathered} 188 \\ (4,78) \end{gathered}$ |
|  | EB | RC20 | RCR20 | 1/2 | 2500 | $\begin{gathered} 3.812 \\ (96,82) \end{gathered}$ | $\begin{gathered} 3.750 \\ (95,25) \end{gathered}$ | $\begin{gathered} 9.750 \\ (247.65) \end{gathered}$ | $\begin{gathered} 9.000 \\ (228,60) \end{gathered}$ | $\begin{aligned} & 170 \text { max } \\ & (4,32) \end{aligned}$ | $\begin{gathered} 2.938 \\ (74,63) \end{gathered}$ | $\begin{gathered} 2.50 \\ (6,35) \end{gathered}$ |
|  | EB | RC20 | RCR20 | 1/2 | 5000 | $\begin{gathered} 3.812 \\ (96,82) \end{gathered}$ | $\begin{gathered} 3.750 \\ (95,25) \end{gathered}$ | $\begin{gathered} 13.188 \\ (334,98) \end{gathered}$ | $\begin{gathered} 12.188 \\ (309.58) \end{gathered}$ | $\begin{gathered} .170 \max . \\ (4,32) \end{gathered}$ | $\begin{gathered} 2.938 \\ (74,63) \end{gathered}$ | $\begin{gathered} .250 \\ (6,35) \end{gathered}$ |
|  | GB | RC32 | RCR32 | 1 | 2000 | $\begin{gathered} 4.062 \\ (103,17) \end{gathered}$ | $\begin{gathered} 4.000 \\ (101,60) \end{gathered}$ | $\begin{gathered} 13.188 \\ (334,98) \end{gathered}$ | $\begin{gathered} 12.188 \\ (309,58) \end{gathered}$ | $\begin{gathered} .270 \text { max } . \\ (6,86) \end{gathered}$ | $\begin{gathered} 3.188 \\ (80,98) \end{gathered}$ | $\begin{array}{r} 375 \\ (9,53) \end{array}$ |
|  | HB | RC42 | RCR42 | 2 | 1000 | $\begin{gathered} 4.062 \\ (103.17) \\ \hline \end{gathered}$ | $\begin{gathered} 4.000 \\ (101,60) \\ \hline \end{gathered}$ | $\begin{gathered} 13.188 \\ (334,98) \\ \hline \end{gathered}$ | $\begin{gathered} 12.188 \\ (309,58) \\ \hline \end{gathered}$ | $\begin{gathered} 385 \text { max. } \\ (9,78) \\ \hline \end{gathered}$ | $\begin{gathered} 3.188 \\ (80,98) \\ \hline \end{gathered}$ | $\begin{gathered} 375 \\ (9,53) \\ \hline \end{gathered}$ |
| Double Lead Tape | B8 $\mathbf{2}^{2}$ | RC05 | RCR05 | 1/8 | 500 1 | $\begin{gathered} 2.688 \\ (68,28) \end{gathered}$ | $\begin{gathered} 2.625 \\ (66,68) \end{gathered}$ | $\begin{gathered} 4.062 \\ (103,17) \end{gathered}$ | $\begin{gathered} \hline 3.750 \\ (95,25) \end{gathered}$ | $\begin{array}{r} 200 \pm .015 \\ (5,08 \pm 0,38) \end{array}$ | $\begin{gathered} 1.812 \\ (46,02) \end{gathered}$ | $\begin{gathered} 250 \\ (6,35) \end{gathered}$ |
|  | BB[2] | RC05 | RCR05 | 1/8 | 2000 远 | $\begin{gathered} 2.688 \\ (68,28) \end{gathered}$ | $\begin{gathered} 2,625 \\ (66,68) \end{gathered}$ | $\begin{gathered} 6.500 \\ (165,10) \end{gathered}$ | $\begin{gathered} 6.000 \\ (152,40) \end{gathered}$ | $\begin{gathered} 200 \pm 0.15 \\ (5,08 \pm 0,38) \end{gathered}$ | $\begin{gathered} 1.812 \\ (46,02) \end{gathered}$ | $\begin{gathered} .250 \\ (6,35) \end{gathered}$ |
|  | CB | RC07 | RCR07 | 1/4 | 2500 新 | $\begin{gathered} 3.625 \\ (92,08) \end{gathered}$ | $\begin{gathered} 3.562 \\ (90,47) \end{gathered}$ | $\begin{gathered} 9.750 \\ (247,65) \end{gathered}$ | $\begin{gathered} 9.000 \\ (228,60) \end{gathered}$ | $\begin{gathered} 200 \pm .015 \\ (5,08 \pm 0,38) \end{gathered}$ | $\begin{gathered} 2.750 \\ (69,85) \end{gathered}$ | $\begin{gathered} .250 \\ (6,35) \end{gathered}$ |
|  | CB | RC07 | RCR07 | $1 / 4$ | 5000 12 | $\begin{gathered} 3.625 \\ (92,08) \end{gathered}$ | $\begin{gathered} 3.562 \\ (90,47) \end{gathered}$ | $\begin{gathered} 13.188 \\ (334,98) \end{gathered}$ | $\begin{gathered} 12.188 \\ (309,58) \end{gathered}$ | $\begin{array}{r} 200 \pm .015 \\ (5,08 \pm 0,38) \end{array}$ | $\begin{gathered} 2.750 \\ (69,85) \end{gathered}$ | $\begin{gathered} .250 \\ (6,35) \end{gathered}$ |
|  | EB | RC20 | RCR20 | 1/2 | 2500 | $\begin{gathered} 3.812 \\ (96,82) \end{gathered}$ | $\begin{gathered} 3.750 \\ (95,25) \end{gathered}$ | $\begin{gathered} 9.750 \\ (247,65) \end{gathered}$ | $\begin{gathered} 9.000 \\ (228,60) \end{gathered}$ | $\begin{array}{r} 200 \pm, 015 \\ (5,08 \pm 0,38) \end{array}$ | $\begin{gathered} 2.938 \\ (74,63) \end{gathered}$ | $\begin{gathered} 250 \\ (6,35) \end{gathered}$ |
|  | EB | RC20 | RCR20 | 1/2 | 5000 [2] | $\begin{gathered} 3.812 \\ (96,82) \end{gathered}$ | $\begin{gathered} 3.750 \\ (95,25) \end{gathered}$ | $\begin{gathered} 13.188 \\ (334,98) \end{gathered}$ | $\begin{gathered} 12.188 \\ (309,58) \end{gathered}$ | $\begin{gathered} .200 \pm .015 \\ (5,08 \pm 0,38) \end{gathered}$ | $\begin{gathered} 2.938 \\ (74,63) \end{gathered}$ | $\frac{250}{(6,35)}$ |
|  | GB | RC32 | RCR32 | 1 | 2000 | $\begin{gathered} 4.062 \\ (103,17) \end{gathered}$ | $\begin{gathered} 4.000 \\ (101,60) \end{gathered}$ | $\begin{gathered} 13.188 \\ (334,98) \end{gathered}$ | $\begin{gathered} 12.188 \\ (309,58) \end{gathered}$ | $\begin{gathered} .375 \pm .015 \\ (9,53 \pm 0,38) \end{gathered}$ | $\begin{gathered} 3.188 \\ (80,98) \end{gathered}$ | $\begin{gathered} 250 \\ (6,35) \end{gathered}$ |
|  | HB | RC42 | RCR42 | 2 | 1000 | $\begin{gathered} 4.062 \\ (103,17) \end{gathered}$ | $\begin{gathered} 4.000 \\ (101,60) \\ \hline \end{gathered}$ | $\begin{gathered} 13.188 \\ (334,98) \\ \hline \end{gathered}$ | $\begin{gathered} 12.188 \\ (309,58) \\ \hline \end{gathered}$ | $\begin{array}{r} 375 \pm .015 \\ (9,53 \pm 0,38) \\ \hline \end{array}$ | $\begin{gathered} 3.188 \\ (80,98) \\ \hline \end{gathered}$ | $\begin{gathered} .250 \\ (6,35) \\ \hline \end{gathered}$ |

12 Kraft paper is wound between layers of Types BB and CB for full length of reel. For Types EB, GB, and HB it is wound only as far as necessary for adequate protection.
21 Available upon request.
Note: Dimensions shown in parentheses are in millimeters.


The following information has been compiled to aid in the everyday selection and application of AllenBradley hot-molded resistors. The statements on this page should be helpful in evaluating the use of all types of A-B hot-molded resistors in broad general terms, and are not to be interpreted as precise. A comprehensive list is made of the standard nominal resistance values in their available tolerance categories, the rated continuous working voltages for all hot-molded types, the part numbers, and color codes - all information provided for all values from 1 ohm to 100 megohms, taking into account the available range of values for each type as of the date of this publication.

1. Low-value resistors exhibit less change due to humidity, temperature and voltage than high-value resistors.
2. Resistance changes due to increase in moisture content are always positive.
3. Resistance changes due to humidity are temporary, and, in the case of Allen-Bradley resistors, are reversible.
4. Change of resistance which has occurred due to humidity may be essentially eliminated by conditioning the resistor at $100^{\circ} \mathrm{C}$ or by dry storage.
5. The effects of humidity may be minimized by operating the resistor with as little as $1 / 10$ rated wattage load.
6. Resistance change due to load life is permanent and usually ultimately negative.
7. Resistance change due to load life can be minimized $-1 \%$ to $2 \%$ in many thousands of hours by $50 \%$ derating. This same result can be attained by limiting the maximum operating surface temperature of the resistor under load to $100^{\circ} \mathrm{C}$. Permanent resistance changes as the result of storage at temperatures below $100^{\circ} \mathrm{C}$ are negligible, even for extended time periods.
8. Resistance change due to soldering is positive and may be permanent if the resistor has excessive moisture present in its body. It can be greatly minimized if resistors are dry at the time of soldering.
9. The temperature characteristic of Allen-Bradley resistors is positive above $+80^{\circ}$ and below $-10^{\circ} \mathrm{C}$.
10. The temperature characteristic of the AllenBradley resistor is negligible from $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
11. The voltage characteristic (negative) and the temperature characteristic (positive) tend to cancel one another in an Allen-Bradley resistor under average operating conditions, where both significant voltage and elevated temperature are present.
12. The heat sink to which a resistor is connected affects its rating. Resistors operated in multiple should be derated unless adequate heat sinks are provided.
13. The quality and reliability of Allen-Bradley resistors is the same for, and independent of, any resistance tolerances shown on the resistor,
14. Years of accumulated experience have shown that Allen-Bradley hot-molded resistors are unequalled for uniformity, predictable performance, appearance, and freedom from catastrophic failure. Allen-Bradley resistors are made by an exclusive hot-molding process on automatic machines - developed, built, and used only by Allen-Bradley. There is such complete uniformity from one resistor to the next - million after million - that long term in. circuit performance can be predicted with usable accuracy. When used according to published ratings and recommendations, Allen-Bradley hotmolded fixed resistors will not open circuit nor exhibit erratic changes of resistance value. They are probably the most reliable of all electronic components.

Types $\mathrm{BB}, \mathrm{CB}, \mathrm{EB}, \mathrm{GB}$,
$H B, G M, H M$
Standard resistance values



Wating at $70^{\circ} \mathrm{C}$, derated to zero at $130^{\circ} \mathrm{C}$
2 Rating at $70^{\circ} \mathrm{C}$, derated to zero at $150^{\circ} \mathrm{C}$

Standard resistance values

| Nominal Resistance in Ohms |  |  | Rated Continuous Working Voltage (RCWV) DC or RMS Volts |  |  |  |  |  |  |  |  | Resistor Part Number |  |  | Resistance Color Code <br> _ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tolerance color code |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Type | Value Code | Toler- <br> ance$5=5 \%$$1=10 \%$$2=20 \%$ | - Min - |  |  |  |  |  |  |  |  |
| 4th BAND |  |  |  |  |  | WATTAGE and TYPE |  |  |  |  |  |  |  |  | - | 1 |  |
|  |  |  | ${ }^{4} \times$ |  |  | 1418 | 12 | 1.1 | $2[1]$ | 36 | 43 | 42 | 5 3 | $\begin{aligned} & C B \\ & \mathrm{~EB} \\ & \text { etc. } \\ & \mathrm{XX} \end{aligned}$ | $\begin{gathered} \text { 1st } \\ \text { BAND } \\ \text { 1st } \\ \text { digit } \end{gathered}$ | 2nd <br> 2nd <br> digit | $\begin{gathered} \text { 3rd } \\ \text { BAND } \\ \text { Number of } \\ \text { zeros atter } \\ \text { 1st and 2nd } \\ \text { digit } \\ \hline \end{gathered}$ |
| Gold | Silver $=10 \%$ | None $+20^{\circ}$ | BB | CB | EB | GB | HB | GM | GM | HM | HM | 000 | X |  |  |  |  |
| 0.27 | 027 | - | 150 | 250 | 350 | 500 | 735 | 500 | 500 | 750 | 750 | 74 |  |  | Red | Violet | Yellow |
| 0.30 |  | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 304 |  | Orange | Black | Yellow |
| 0.33 | 0.33 | 0.33 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 334 |  | Orange | Orange | Yellow |
| 0.36 |  | 0 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 364 |  | Orange | Blue | Yellow |
| 0.39 | 0.39 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 394 |  | Orange | White | Yellow |
| 0.43 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 434 |  | Yellow | Orange | Yellow |
| 0.47 | 0.47 | 0.47 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 474 |  | Yellow | Violet | Yellow |
| 0.51 |  | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 514 |  | Green | Brown | Yellow |
| 0.56 | 0.56 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 564 |  | Green | Blue | Yellow |
| 0.62 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 624 |  | Blue | Red | Yellow |
| 0.68 | 0.68 | 0.68 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 684 |  | Blue | Gray | Yellow |
| 0.75 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 754 |  | Violet | Green | Yellow |
| 0.82 | 082 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 824 |  | Gray | Red | Yellow |
| 0.91 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 914 |  | White | Brown | Yellow |
| 1.0 | 1.0 | 1.0 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 105 |  | Brown | Black | Green |
| 1.1 | - | - | 150 | 250 | 350 | 000 | 750 | 500 | 500 | 750 | 750 |  | 115 |  | Brown | Brown | Green |
| 12 | 1.2 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 125 |  | Brown | Red | Green |
| 1.3 |  | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 135 |  | Brown | Orange | Green |
| 1.5 | 1.5 | 1.5 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 155 |  | Brown | Green | Green |
| 1.6 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 165 |  | Brown | Blue | Green |
| 1.8 | 1.8 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 185 |  | Brown | Gray | Green |
| 2.0 |  | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 205 |  | Red | Black | Green |
| 2.2 | 2.2 | 2.2 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 225 |  | Red | Red | Green |
| 2.4 |  | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 245 |  | Red | Yellow | Green |
| 2.7 | 2.7 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 275 |  | Red | Violet | Green |
| 3.0 | $\overline{3}$ | $\overline{3}$ | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 305 |  | Orange | Black | Green |
| 33 | 3.3 | 3.3 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 335 |  | Orange | Orange | Green |
| 3.6 |  | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 365 |  | Orange | Blue | Green |
| 3.9 | 3.9 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 395 |  | Orange | White | Green |
| 4.3 | S | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 435 |  | Yellow | Orange | Green |
| 4.7 | 4.7 | 4.7 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 475 |  | Yellow | Violet | Green |
| 5.1 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 515 |  | Green | Brown | Green |
| 5.6 | 5.6 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 565 |  | Green | Blue | Green |
| 6.2 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 625 |  | Blue | Red | Green |
| 6.8 | 6.8 | 6.8 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 685 |  | Blue | Gray | Green |
| 7.5 | $\square$ | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 755 |  | Violet | Green | Green |
| 8.2 | 8.2 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 825 |  | Gray | Red | Green |
| 9.1 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 915 |  | White | Brown | Green |
| 10 | 10 | 10 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 106 |  | Brown | Black | Blue |
| 11 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 116 |  | Brown | Brown | Blue |
| 12 | 12 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 126 |  | Brown | Red | Blue |
| 13 |  |  | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 136 |  | Brown | Orange | Blue |
| 15 | 15 | 15 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 156 |  | Brown | Green | Blue |
| 16 |  | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 166 |  | Brown | Blue | Blue |
| 18 | 18 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 186 |  | Brown | Gray | Blue |
| 20 |  | 2 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 206 |  | Red | Black | Blue |
| 22 | 22 | 22 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 226 |  | Red | Red | Blue |
| 24 |  |  | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 246 |  | Red | Yellow | Blue |
| 27 | 27 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 276 |  | Red | Violet | Blue |
| 30 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 306 |  | Orange | Black | Blue |
| 33 | 33 | 33 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 336 |  | Orange | Orange | Blue |
| 36 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 366 |  | Orange | Blue | Blue |
| 39 | 39 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 396 |  | Orange | White | Blue |
| 43 | 4 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 436 |  | Yellow | Orange | Blue |
| 47 | 47 | 47 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 476 |  | Yellow | Violet | Blue |
| 51 | 56 | - | ${ }^{150}$ | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 516 |  | Green | Brown | Blue |
| 56 | 56 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 566 |  | Green | Blue | Blue |
| 62 |  | 8 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 626 |  | Blue | Red | Blue |
| 68 | 68 | 68 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 686 |  | Blue | Gray | Blue |
| 75 |  | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 756 |  | Violet | Green | Blue |
| 82 | 82 | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 826 |  | Gray | Red | Blue |
| 91 | - | - | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 916 |  | White | Brown | Blue |
| 100 | 100 | 100 | 150 | 250 | 350 | 500 | 750 | 500 | 500 | 750 | 750 |  | 107 |  | Brown | Black | Violet |

[^0]
## EXPLANATION OF PART NUMBERS

All Allen-Bradley fixed composition resistors are identified by a Part Number which will provide information as to the type of resistor, resistance value, and tolerance. The Part Number is merely for identification on drawings, specifications, ordering, and other areas where it is convenient to use a Part Number to describe a particular resistor. The only markings that appear on the resistor are the Color Code bands.


Standard color code and preferred number series


Types BB, CB, EB, GB,
HB, GM, HM

## DIMENSIONS



Dimensions shown in parentheses are in millimeters.

24

# Types BB, CB, EB, GB HB, GM, HM <br> Hot-Molded Fixed Resistors 

EVALUATION TESTS

\author{

- Measurement Methods <br> - Test Procedures <br> - Test Sequence
}

General - This publication defines standardized methods for testing discrete fixed resistors, including basic environmental tests to determine the ability of the resistor to withstand climatic stresses, as well as physical and electrical tests to determine production assembly durability and operational life. The laboratory conditions specified are designed to give results which are indicative of what may be observed under similar stresses which may be encountered in field use. However, they are not intended to be exact or conclusive representations of any specific actual service operation. They are intended to be standardized such that reproducible results can be obtained in repetitive tests or comparison evaluations.
Standard test conditions - Unless otherwise specified herein, or in applicable referenced specifications, all measurements and tests shall be made at temperatures of $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$, at air pressure of 650 to 800 millimeters of mercury, and relative humidity of 45 percent to 75 percent. Whenever these conditions must be closely controlled in order to obtain reproducible results, for referee purposes the ambient temperature shall be $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$, and the humidity 50 percent $\pm 2$ percent.
Cross reference - At the end of this publication is a cross index table comparing these test methods to similar procedures specified in applicable military or industrial specifications. Wherever the tests are not identical, notations are given regarding the differences.
Resistance measuring techniques - Measured resistance value is dependent upon the resistor temperature, the test voltage, and the degree of resistor dryness. Accurate correlation between repeated measurements, especially at different times, and different locations, requires that these three conditions be essentially the same.

Slight variations in resistor body temperature are not significant in room temperature measurements. However, the temperature of the resistor body may increase appreciably when tested at too high a voltage or when the voltage is applied for too long a time causing excessive heating.
For accurate measurements to determine the resistance value tolerance, the test voltage is very important and sometimes misunderstood or overlooked. This is because a tester is often unaware of the actual voltage that an instrument may be applying to the resistor under test. Commonly used instruments such as highly accurate resistance bridges or digital voltmeters employ relatively low voltages to make measurements, usually around 1 volt and seldom higher than 10 volts. This does not cause significant differences for low resistance values where the use of low test voltages is specified. However, for higher resistance values such as 100 K ohms or higher, a test voltage of 100 volts is specified and use of a low voltage test instrument will result in substantial difference in readings. For comparison measurements to determine the resistance change which may occur due to some electrical or environmental stress, either the standard test voltage or a low voltage may be used, since only the resistance change is being examined, independent of the absolute resistance value. The principal requirement is that the same meter be used for both initial and final measurements.
It is important to recognize that apparent out-oftolerance on the + side can be caused by excessive exposure to high humidity. To eliminate this potential humidity offset, all test samples are to be conditioned in accordance with Paragraph 3.2 prior to commencement of testing. In this manner, the effects of any electrical or environmental stress can be examined separately, without any confusion with possible moisture resistance offset.

## Types BB,CB, EB, GB

HB,GM,HM

1. SCOPE
1.1 Scope
2. DEFINITIONS
2.1 Power Ratings
2.2 Voltage Rating
3. SAMPLE SELECTION
3.1 Sample Selection
3.2 Conditioning
4. TESTING SEQUENCE
4.1 Testing Sequence
5. RESISTANCE MEASUREMENTS
5.1 Resistance Measurements
5.2 Reference Test Voltages
6. PERFORMANCE CHARACTERISTICS
6.1 Visual and Mechanical Inspection
6.2 Resistance Tolerance
6.3 Resistance-Temperature Characteristic
6.3.1 Procedure
6.4 Resistance-Voltage Coefficient
6.4.1 Significance
6.4.2 Procedure
6.5 Dielectric Withstanding Voltage
6.5.1 Mounting
6.5.2 Procedure 6.5.2.1 Sea Level Atmospheric Pressure
6.5.2.2 High Altitude Atmospheric Pressure
6.6 Insulation Resistance
6.6.1 Mounting
6.6.2 Procedure
6.7 Low Temperature Operation
6.7.1 Mounting
6.7.2 Procedure
6.8 Thermal Shock
6.8.1 Procedure
6.9 Moisture Resistance
6.9.1 Mounting
6.9.2 Procedure
6.9.2.1 Cycles
6.9.2.2 Load
6.9.2.3 Vibration
6.9.2.4 Measurements
6.10 Humidity Characteristic (Steady State)
6.10.1 Significance
6.10.2 Procedure
6.11 Short Time Overload 6.11.1 Procedure
6.12 Load Life
6.12.1 Test Conditions
6.12.2 Procedure
6.13 Terminal Strength
6.13.1 Procedure 6.13.1.1 Pull 6.13.1.2 Twist
6.14 Resistance to Solder Heat 6.14.1 Procedure
6.15 Solderability
6.15.1 Apparatus
6.15.2 Materials
6.15.3 Procedure
6.16 Shock
6.16.1 Mounting
6.16.2 Apparatus
6.16.3 Procedure
6.17 Vibration
6.17.1 Mounting
6.17.2 Procedure
6.18 Pulse Applications
6.18.1 Significance
6.18.2 Procedure
6.19 Color Code Solvent Resistance 6.19.1 Procedure
6.20 Low Temperature Storage
6.20.1 Mounting
6.20.2 Procedure
7. CONDITIONING
7.1 Significance
7.2 Procedure

## 1. SCOPE

1.1 Scope - The tests described in this publication are considered appropriate for the evaluation of molded and film type composition resistors.

## 2. DEFINITIONS

2.1 Power ratings - The maximum continuous power ratings of Allen-Bradley resistors are as indicated in Table 1 on Page 31, and are dependent on the ability of resistors to meet the load life test requirements. See Allen-Bradley Technical Publication EC5021-2.1 for rating details.
2.2 Voltage rating - The maximum rated continuous working voltage (RCWV max.), DC or sine wave RMS at commercial line frequency, which must not exceed the maximum listed in Table 1, is equal to $\sqrt{\mathrm{PR}}$, where P is the power rating in watts and R is the nominal resistance in ohms.

## 3. SAMPLE SELECTION

3.1 Sample selection - Resistors with the narrowest standard commercial tolerance shall be used. Resistance values selected for test shall include the lowest and highest standard values listed by the manufacturer, also the critical values. The critical resistance value is defined as the lowest standard value to which maximum rated continuous working voltage can be applied without exceeding rated continuous wattage at $+70^{\circ} \mathrm{C}$ ambient temperature. See Table 1. Ten resistors of each type and resistance value should be used for each test group.
3.2 Conditioning - Resistors which are NOT truly hermetically sealed by means of enclosures made of metal, glass or ceramic material with appropriate seals, must first be treated in accordance with Paragraph 7, Conditioning. After conditioning, such resistors should be kept in a desiccator except when under another specified test environment in accordance with the test requirements of Table 2 on Page 31.

## 4. TESTING SEQUENCE

4.1 Testing sequence - All resistor test specimens shall be subjected to Group 1 tests. Separate samples selected from those tested under Group 1 shall be used for each additional test group. Within a group, tests shall be conducted in the order specified.

## 5. RESISTANCE MEASUREMENTS

### 5.1 Resistance measurements - Resistance

 measurement error shall not exceed one-tenth the allowable resistance change due to testing or 0.5 percent, whichever is less. Unless otherwise specified, the same instrument, temperature (within $+2^{\circ} \mathrm{C}$ ), and DC test voltage listed in the table below (because of instantaneous voltage characteristic) applied for as short a time as practicable (to avoid heating during the measurement), shall be used throughout any one of the performance characteristic tests. Wheatstone Bridge test equipment is preferred.5.2 Reference test voltages - In the event of a difference in resistance readings attributable to the test voltage used, the specified test voltage listed below shall be used.

| Nominal <br> Resistance Range | Recommended <br> Test Voltages (DC Volts) |
| :---: | :---: |
| 1.0 to 9.1 ohms | 0.3 |
| 10 to 91 ohms | 1.0 |
| 100 to 910 ohms | 3.0 |
| 1 K to 9.1 K ohms | 10 |
| 10 K to 91 K ohms | 30 |
| 0.1 Meg. and Higher | 100 |

## 6. PERFORMANCE CHARACTERISTICS

6.1 Visual and Mechanical Inspection - Conformance with manufacturer's catalog specifications shall be verified.
6.2 Resistance tolerance - Resistance shall not exceed the specified limits when measured at $+25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ using the test voltages listed above.

### 6.3 Resistance-temperature characteristic

6.3.1 Procedure - Resistors shall be maintained within $\pm 1^{\circ} \mathrm{C}$ at each of the ambient temperatures listed in Table 3 on Page 31, and in the order shown. The use of forced circulating air is recommended to assure temperature stability and uniformity. Resistance measurements shall be made at each temperature 15 minutes after air temperature has stabilized at the specified temperature. The percent difference in resistance referred to the resistance at $+25^{\circ} \mathrm{C}$ shall be computed with the following formula:
Percent Resistance Difference $=\frac{(R-r) \times 100}{r}$
Where: $R$ is the resistance at test temperature $r$ is the resistance at $+25^{\circ} \mathrm{C}$

### 6.4 Resistance-voltage coefficient

6.4.1 Significance - The instantaneous voltage coefficient is normally important only with respect to incoming inspection testing and in the comparison of results obtained in evaluation testing.
6.4.2 Procedure - The resistance shall be measured at one-tenth the RCWV and at full RCWV. Application of voltages shall be momentary to minimize heating effects. The resistance-voltage coefficient shall be calculated with the following formula:
$\begin{aligned} & \text { Voltage Coefficient } \\ & \text { Percent Per Volt }\end{aligned}=\frac{(\mathrm{R}-\mathrm{r}) \times 100}{r \times 0.9(\mathrm{RCWV})}$
Where: R is the resistance at full RCWV $r$ is the resistance at one-tenth RCWV

### 6.5 Dielectric withstanding voltage

6.5.1 Mounting - The resistors shall be clamped in the trough of a $90^{\circ}$ metallic V-block of such size that the resistor body does not extend beyond the ends of the trough. The resistor leads shall be positioned such that they are no closer to the V-block than if they were parallel to the sides of the V-block. This prevents unnecessary proximity of the leads to the block, while permitting complete seating of the resistor body in the block.
6.5.2 Procedure - Sine wave RMS voltages from an alternating current supply at commercial line frequency not more than 100 Hertz as specified in Table 1 shall be applied at the rate of approximately 100 volts per second between resistor terminals connected together and the V block, and held for 5 seconds.
6.5.2.1 Sea level atmospheric pressure - The procedure in 6.5 .2 shall be carried out at a normal sea level atmospheric pressure of approximately 30 inches ( 1016 mbars) mercury using the appropriate voltage specified in Table 1.
6.5.2.2 High altitude atmospheric pressure - The procedure in 6.5 .2 shall be carried out at a pressure of approximately 3.4 inches ( 115 mbars) mercury using the appropriate voltage specified in Table 1. This pressure is approximately equivalent to an altitude of 50,000 feet ( 15240 meters).

### 6.6 Insulation resistance

6.6.1 Mounting - Resistors shall be clamped between a round non-conducting rod at right angles to the resistor body and a conducting resilient material approximately

## rypes $\mathrm{BB}, \mathrm{CB}, \mathrm{EB}, \mathrm{GB}$ <br> HB, GM, HM

0.075 inch ( $1,90 \mathrm{~mm}$ ) thick conductively attached or bonded to a rigid metal strap. See Figure 1. The clamping pressure shall be such as to embed the resistor color bands in the resilient material and provide intimate electrical contact over the entire length of the resistor body along a surface line parallel to the longitudinal axis of the resistor. The metal strap and resilient conductive coating shall be at least as wide as the length of the resistor body, and the resistor body shall be approximately centered on the strap. See Figure 1. For types GM and HM, connection may be made to the attached metal clamp in lieu of the coated metal strap described above. The resistivity of the resilient conducting material shall be less than 1000 ohm-centimeters.
6.6.2 Procedure - Avoiding excessive handling to minimize the effects of perspiration or other contaminants, connect the lead wires of the resistor together and measure the resistance between them and the metal strap using a DC test voltage as specified in Table 1.

## Resilient Conductive



Figure 1

### 6.7 Low temperature operation

6.7.1 Mounting - Resistors shall be mounted by their leads so that there is at least 1 inch $(25,40 \mathrm{~mm})$ of free air space around each resistor and the mounting is in such a position with respect to the air stream that it offers no appreciable obstruction to the flow of air across and around the resistors,
6.7.2 Procedure - Initial resistance shall be measured. The resistors shall then be exposed to the air stream at $-65^{\circ} \mathrm{C}\left(+0^{\circ} \mathrm{C},-5^{\circ} \mathrm{C}\right)$ for 1 hour with no voltage applied, and then 45 minutes with the RCWV applied, after which the resistors shall be placed at room temperature.
Approximately 24 hours after return to room temperature, final resistance shall be measured.

### 6.8 Thermal shock

6.8.1 Procedure - Initial resistance shall be measured.

Mounted as specified in 6.7.1, the resistors shall be subjected to the temperature cycle specified in Table 4 on Page 31 for a total of five cycles, performed continuously. Temperatures in Steps 1 and 3 shall be maintained by forced air circulation. The hot and cold chambers shall be of such capacity that the air temperature will reach the temperatures specified in Table 4 within 2 minutes after the resistors have been placed in the appropriate chamber. Final resistance shall be measured approximately 1 hour after completion of the fifth cycle.

### 6.9 Moisture resistance

6.9.1 Mounting - The resistors shall be fastened by their leads to suitable supports (to insure no mechanical resonances between 10 and 55 Hertz ) so that the length of each lead between the resistor body and the support is $3 / 8$ inch ( $9,52 \mathrm{~mm}$ ).

### 6.9.2 Procedure

6.9.2.1 Cycles - Ten cycles shall be performed as specified in Figure 2.

## 28

6.9.2.2 Load - During the first 2 hours of Steps 1 and 4, DC RCWV shall be applied to half the resistors of each type and resistance value on test.
6.9.2.3 Vibration - The mounted resistors shall be subjected to a simple harmonic motion having a maximum amplitude of 0.06 inch ( $0,15 \mathrm{~mm}$ ) peak-to-peak, the frequency being varied uniformly from 10 to 55 and back to 10 Hertz in one minute. This motion shall be applied in a direction perpendicular to the longitudinal axis of the resistors.
6.9.2.4 Measurements - Initial resistance shall be measured before the test. After Step 6 in the final cycle, the resistors shall be exposed to a temperature of $+25^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$ and a relative humidity of 90 to 98 percent, for $1-1 / 2$ to $3-1 / 2$ hours. Upon removal from the test chamber, resistors shall be permitted to dry for a maximum of 4 hours at $+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ at no less than 50 percent relative humidity. Such drying atmosphere shall not be forced, circulating air. At the end of the drying period, final resistance and insulation resistance (per 6.6) shall be measured.


Figure 2

### 6.10 Humidity characteristic (steady state)

6.10.1 Significance - Results from the moisture resistance testing specified in 6.9 have been found to vary because of the equipment required, and because the results obtained are largely a function of the particular apparatus used, size of chamber, etc. Results obtained with one apparatus cannot be directly compared with results obtained with other apparatus. The following steady state humidity test is recommended in place of the moisture resistance test in order to obtain better isolation of the effects of moisture.
6.10.2 Procedure - Initial resistance values shall be measured. Excessive handling and surface contamination shall be avoided. Resistors shall then be placed in a chamber at a relative humidity of 90 to 95 percent at an ambient temperature of $+40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for a period of 240 hours. After removal from the chamber, the resistors shall be allowed to dry at room ambient for 4 hours to remove surface moisture following which final resistance measurements shall be made. The resistors may then be subjected to the conditioning described in Paragraph 7 to determine whether the resistance changes due to moisture are permanent.

### 6.11 Short time overload

6.11.1 Procedure - A well regulated DC or sine wave RMS voltage 2.5 times ( 2 times for Types GM and HM) the RCWV, but not exceeding the limit values listed in Table 1, shall be applied for 5 seconds. Resistance shall be measured before and approximately 30 minutes after the application of the test voltage.

### 6.12 Load life

6.12.1 Test conditions - This test shall be conducted at an ambient temperature of $+70^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Resistors shall be mounted by their leads soldered to lightweight terminals, and, in addition, for Types GM and HM, their metal clamps should be bolted to a 4 inch $(101,60 \mathrm{~mm})$ square steel plate 0.050 inch ( $1,27 \mathrm{~mm}$ ) thick, one plate per resistor. The effective length of each lead shall be $1 \pm 3 / 16$ inch $(25,40 \pm 4,76 \mathrm{~mm})$. Resistors shall be so arranged that the heat from any one resistor will not appreciably influence the temperature of any other resistor. There shall be no circulation of air directly over any resistor other than that caused by the heat of that resistor itself. RCWV shall be used.
6.12.2 Procedure - After exposure of the resistors to the $+70^{\circ} \mathrm{C}$ ambient test temperature without load for 2 hours, initial resistances shall be measured at the test ambient temperature. Then DC RCWV shall be applied intermittently $1-1 / 2$ hour "ON", $1 / 2$ hour "OFF" for a total of 1000 hours. Resistance measurements shall be made near the end of the $1 / 2$ hour "OFF" periods at the test ambient temperature after $50 \pm 8,100 \pm 8,250 \pm 8,500$ $\pm 12,750 \pm 12$, and $1000 \pm 12$ hours have elapsed from the time the RCWV was first applied.

### 6.13 Terminal strength

### 6.13.1 Procedure

6.13.1.1 Pull - Initial resistance shall be measured.

Resistor shall then be held by one lead, and a tensile force of 5 pounds ( $2,27 \mathrm{kgm}$ ) (2 pounds [0,91 kgml for Type BB) shall be gradually applied to the other lead in the direction of the longitudinal axis of the resistor. The specified force shall be maintained for 5 seconds.
6.13.1.2 Twist - Following the test in 6.13 .1 .1 , the leads shall be bent $90^{\circ}$ at a point $1 / 4 \pm 1 / 64$ inch $(6,35 \pm 0,40$ mm ) from the resistor body with the radius of curvature at the bend approximately $1 / 32$ inch $(0,80 \mathrm{~mm})$. The free end of the lead shall be clamped at a point $3 / 64 \pm 1 / 64$ inch $(1,19 \pm 0,40 \mathrm{~mm})$ away from the bend. See Figure 3. The

resistor body shall then be rotated about the original axis of the terminal through $360^{\circ}$ in alternating directions for three such rotations, at the rate of approximately 5 seconds per rotation. After the final rotation, final resistance shall be measured.

### 6.14 Resistance to solder heat

6.14.1 Procedure - Initial resistance shall be measured. Resistor leads shall then be immersed, one at a time for 3
$\pm 1 / 2$ seconds each, in molten solder at $+350^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ $\left(-250^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ for Type BB) to a distance of $1 / 8$ to $3 / 16$ inch ( 3,18 to $4,76 \mathrm{~mm}$ ) from the resistor body. Final resistance shall be measured $24+4$ hours after the immersions.

### 6.15 Solderability

6.15.1 Apparatus - A heated still pot or a recirculating flow type soldering machine capable of maintaining the solder at a uniform temperature of $+232^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$ shall be used. If a still pot is used, the stirring paddle and skimmer shall be made of stainless steel or other material which will not contaminate the solder. A dipping device capable of controlling the rate of immersion of resistor leads at 1 $\pm 1 / 4$ inch $(25,40 \pm 6,35 \mathrm{~mm})$ per second, and providing a dwell time of $5 \pm 1 / 2$ seconds in the solder bath shall be used. For examination, an optical system capable of 10 power magnification shall be used.
6.15.2 Materials - The flux shall consist of a minimum of 35 percent by weight waterwhite rosin dissolved in 99 percent isopropyl alcohol. Solder shall be nominally 60 percent tin, 40 percent lead solder, conforming to Type S , composition Sn60 of Specification QQ-S-571D.
6.15.3 Procedure - Both leads of each resistor shall be tested in "as received" condition, with care taken to prevent handling or other contamination which may influence the results of this test. The leads shall be immersed in flux, sufficiently to cover the surfaces to be tested, for 5 to 10 seconds at room temperature. If a scum or dross has accumulated on the solder surface, it shall be skimmed off. If the solder is not circulating, it shall be stirred with the paddle to mix the solder and make the temperature uniform throughout. After stirring, the surface shall be skimmed again. The fluxed leads should then be dipped into the solder once, to the same depth they were immersed in flux, using the dipping apparatus. After dipping, the leads shall be allowed to cool in air. Residual flux may be removed from the leads by dipping in clean isopropyl alcohol and, if necessary, wiping with soft cloth. The surface of each lead shall be examined with the optical system.

### 6.16 Shock

6.16.1 Mounting - Resistors shall be mounted on appropriate fixtures with their leads supported at a distance of $1 / 4$ inch ( $6,35 \mathrm{~mm}$ ) from the resistor body. These fixtures shall be constructed so as to ensure that the points of the resistor mounting supports will have the same motion as the shock table. Test leads shall be 22 AWG or smaller, and of minimum length.
6.16.2 Apparatus - Apparatus shall be provided of such design as to impart a terminal-peak sawtooth shock pulse with a peak value of 100 g and normal duration of 6 milliseconds. The actual velocity change must be within 10 percent of the ideal pulse velocity change of $9.7 \mathrm{ft} / \mathrm{sec}$.
6.16.3 Procedure - Initial resistance shall be measured. The mounted resistors shall then be subjected to 10 impacts in each of two directions: parallel and perpendicular to the longitudinal axis of the resistor. Electrical monitoring shall be provided during the test to detect resistor discontinuities of 0.1 millisecond or greater duration. Final measurements and examination for mechanical failures shall be made after the test.

[^1]
## Types BB,CB.EB,GB HB, GM, HM

### 6.17 Vibration

6.17.1 Mounting - The mounting fixtures, with resistors mounted as in 6.16.1, shall be so constructed as to be free of mechanical resonances over the frequency range of 10 to 2000 Hertz.
6.17.2 Procedure - Initial resistance shall be measured. The mounted resistors shall then be subjected to the vibration amplitude and frequency range shown in Figure 4. The vibration waveform shall be a simple harmonic motion having an amplitude sufficient to provide 20 g constant peak acceleration, but not to exceed 0.06 inch $(1,52 \mathrm{~mm})$ peak-to-peak amplitude. The frequency shall be varied approximately logarithmically between the nominal limits of 10 and 2000 Hertz with a return sweep to 10 Hertz. The entire sweep from 10 to 2000 to 10 Hertz shall be traversed in approximately 20 minutes. This sweep cycle shall be performed repeatedly for 6 hours in each of two directions: parallel and perpendicular to the longitudinal axis of the resistor. Interruptions are permitted provided requirements for rate of change and test duration are met. Electrical monitoring shall be provided during this test to detect resistor discontinuities of 0.1 millisecond or greater duration. Final measurements and examination for mechanical failures shall be made after the test.


Figure 4

### 6.18 Pulse applications

6.18.1 Significance - For circuit applications where pulses or transients whose peak values exceed steady state ratings are experienced, tests should be made to determine the suitabilty of the resistors being considered for use.
6.18.2 Procedure - In general, such tests should include life tests for at least 1000 hours under conditions which accurately represent the peak value, pulse waveform and repetition rate, under the environmental conditions which must be met. Tests under more severe conditions are recommended to establish the safety factors involved, bearing in mind that every type of resistor can be seriously damaged or completely destroyed if the stress levels are raised sufficiently. Such tests may be made by use of a noninductive capacitor of suitable capacitance value and voltage rating, charged at successively higher voltages and discharged each time through the resistor under test,
arranging the circuitry for a minimum and consistent inductance value. Resistance measurements should be made, initially and after each capacitor discharge, by uniform method.

## 6,19 Color code solvent resistance

6.19.1 Procedure - The purpose of this test is to verify that the color code will not become eligible or discolored on the resistors when subjected to solvents normally used to clean printed wiring assemblies. The following solvents shall not cause mechanical or electrical damage and markings shall remain legible.

1. A 3 to 1 Mixture of mineral spirits and isopropyl alcohol.

## 2. 1-1-1 trichloroethane.

## 3. Freon TMC.

The test sample shall be divided into three equal groups, with one group subjected to solvent (1.), the second group to solvent (2.) and the third group to solvent (3.). The solutions shall be maintained at room temperature and samples immersed for one minute. Immediately following emersion, the resistor shall be brushed with a hard bristle toothbrush with normal hand pressure for ten strokes in a forward direction across the body surface. Immediately after brushing, this procedure shall be repeated two additional times. After five minutes after completion the resistor shall be examined.

### 6.20 Low temperature storage

6.20.1 Mounting - Resistor mounting shall be the same as described in 6.7.1.
6.20.2 Procedure - Initial resistance shall be measured. The resistors shall then be exposed to the air stream at $-65^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for a period of $24 \pm 4$ hours, after which the resistors shall be placed at room temperature. After approximately 2 to 8 hours, final resistance shall be measured.

## 7. CONDITIONING

7.1 Significance - All resistors except those which are truly hermitically sealed by means of enclosures made of metal, glass or ceramic materials with appropriate seals such as metal to glass, or metal to ceramic, may absorb moisture which can affect resistance values to a varying degree, dependent upon their materials, construction, dimensions and the duration of exposure to atmospheres having a high relative humidity. To eliminate this variable from test results, moisture removal by conditioning with warm DRY air is mandatory if a meaningful comparison of results is desired. Use of a ventilated oven in an air conditioned space is recommended.
7.2 Procedure - Allen-Bradley resistors, as well as competitive makes of similar physical size, should be conditioned in DRY $+100^{\circ} \mathrm{C}\left(+5^{\circ} \mathrm{C},-0^{\circ} \mathrm{C}\right)$ air for the approximate time listed in Table 1. This is normally sufficient to remove absorbed moisture. Longer drying may be required where resistors have been stored for long periods of time under unusually high relative humidity.

## Types BB, CB, EB, GB HB, GM, HM TEST LIMITS AND PROCEDURES FOR HOT-MOLDED FIXED RESISTORS

TABLE 1

| $\begin{gathered} \text { Resistor } \\ \text { Type } \end{gathered}$ | Maximum Continuous Power Rating at $+70^{\circ} \mathrm{C}$ Ambient <br> (Except as Noted) Watts | Maximum Rated Continuous Voltage (RCWV) DC or RMS Volts | Dielectric Withstanding Voltage Volts |  | Insulation Test Voltage$\begin{aligned} & \text { Volts } \\ & \pm 10 \% \end{aligned}$ | Short-Time Overioad Voltage Limit <br> Volts | $\begin{gathered} \begin{array}{c} \text { Recom- } \\ \text { mended } \\ \text { Conditioning } \\ \text { Time at } \end{array} \\ +100^{\circ} \mathrm{C}_{-}^{+5^{\circ}} \mathrm{CO}_{\mathrm{C}} \\ \text { Hours } \end{gathered}$ | Critical Resistance (See 3.1) Megohms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \begin{array}{c} 30 \mathrm{it} . \mathrm{Hg} \\ (1016 \mathrm{mbars}) \end{array} \\ \text { Sea Level } \end{gathered}$ |  |  |  |  |  |
| BB | 1/8 | 150 | 300 | 200 | 100 | 200 | 25 | 0.18 |
| CB | 1/4 | 250 | 500 | 325 | 100 | 400 | 50 | 0.27 |
| EB | 1/2 | 350 | 700 | 450 | 500 | 700 | 75 | 0.27 |
| GB | 1 | 500 | 1000 | 625 | 500 | 1000 | 120 | 0.27 |
| HB | 2 | 750 | 1500 | 625 | 500 | 1000 | 130 | 0.30 |
| GM | 3 | 500 | 1000 | 625 | 500 | 1000 | 120 | 0.091 |
| GM | 4 at $40^{\circ} \mathrm{C}$ | 500 | 1000 | 625 | 500 | 1000 | 120 | 0.068 |
| HM | 4 | 750 | 1500 | 625 | 500 | 1000 | 130 | 0.15 |
| HM | 5 at $40^{\circ} \mathrm{C}$ | 750 | 1500 | 625 | 500 | 1000 | 130 | 0.12 |

TABLE 2

| $\begin{aligned} & 6.1 \\ & 6.2 \end{aligned}$ | Group 1 <br> Visual and Mechanical Inspection Resistance Tolerance |
| :---: | :---: |
| $\begin{array}{r} 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ \hline \end{array}$ | Group 2 <br> Resistance-Temperature Characteristic <br> Resistance-Voltage Coefficient Dielectric Withstanding Voltage Insulation Resistance |
| $\begin{aligned} & 6.7 \\ & 6.8 \\ & 6.20 \\ & 6.9 \\ & 6.10 \\ & 6.11 \end{aligned}$ | Group 3 <br> Low Temperature Operation <br> Thermal Shock <br> Low Temperature Storage <br> Moisture Resistance <br> Humidity (Steady State) - Alternate <br> test for 6.9 <br> Short Time Overload |
| 6.12 | Load Life Group 4 |
| $\begin{aligned} & 6.13 \\ & 6.14 \end{aligned}$ | Group 5 <br> Terminal Strength <br> Resistance to Solder Heat |
| 6.15 | Group 6 Solderability |
|  |   <br> Shock Group 7 <br> Vibration  |
| 6.18 | Group 8 <br> Pulse Applications |
| 6.19 | Group 9 <br> Color Code Solvent Resistance |

TABLE 3

| Temperature Characteristic <br> Test Sequence (See 6.3) |  |
| :---: | :---: |
| Sequence | Ambient <br> Temperature <br> C. |
| A | +105 |
| B | +85 |
| C | +55 |
| D | +25 |
| E | 0 |
| F | -25 |
| G | -55 |

TABLE 4

| Thermal Shock <br> Test Sequence (See 6.8) |  |  |
| :---: | :---: | :---: |
| Step | Temperature <br> ${ }^{2}$ C | Time <br> Minutes |
| 1 | $-55_{-0}^{+0}$ | 30 |
| 2 | $+25 \pm 5$ | 5 |
| 3 | $+85_{-0}^{+3}$ | 30 |
| 4 | $+25 \pm 5$ | 5 |

$\mathrm{BB}, \mathrm{CB}, \mathrm{EB}, \mathrm{GB}$

## CROSS INDEX OF RESISTOR TEST METHODS FOR HOT-MOLDED FIXED RESISTORS

The table below lists the Allen-Bradley test methods used and equivalent or similar methods specified in military and industrial specifications with information to make the tests equivalent.

| Test Description | Technical <br> Publication EC5021-2.2 <br> Paragraph Number | MIL-R-39008B Paragraph Number and Details | MIL-STD-202E Method and Details | EIA-RS-172-B Paragraph Number and Details |
| :---: | :---: | :---: | :---: | :---: |
| Resistance Measurements | 5 | 4.7.2 $\underset{\text { 1. Voltages per Paragraph } 5.2}{ }$ | 303 | 1. Voltages per Paragraph 5.2 |
| Resistance Temperature Characteristic | 6.3 | 4.7.3 1. Temperatures per Table 3, Page 31 <br> 2. Omits recommendation for forced circulating air | $304$ <br> 1. Compute percent resistance difference per Paragraph 6.3.1 | 3.2.3 1. Temperatures per Table 3, Page 31 <br> 2. Omits recommendation for forced circulating air |
| Resistance Voltage Coefficient | 6.4 | 4.7.4 | 309 | 3.2 .4 <br> 1. Voltage application should be momentary to minimize heating effects |
|  |  | $4.7 .5$ | 301 1. Test duration 5 seconds. | $3.2 .5$ |
| Withstanding Voltage | 6.5 | for 2 watt per Table 1 | 105C <br> 1. Test Condition B. Test duration 5 seconds. | for 2 watt per Table 1 |
| Insulation Resistance | 6.6 | 4.7.6 | $302$ <br> 1. Test condition A (1/8 and $1 / 4$ watt) <br> 2. Test condition B (1/2, 1 and 2 watt) . | No Equivalent Test |
| Low Temperature Operation | 6.7 | 4.7 .7 | No Equivalent Test | 3.2.7 |
| Low Temperature Storage | 6.20 | 4.7.17 | No Equivalent Test | No Equivalent Test |
| Thermal Shock | 6.8 | 4.7 .8 | 1. Test Condition A | 3.2 .8 1. Test sequence per Table 4 |
| Moisture Resistance | 6.9 | 4.7 .9 | 106D | No Equivalent Test |
| Humidity (Steady State) | 6.10 | No Equivalent Test | 103B <br> 1. Test Condition A <br> 2. Paragraph 3.1 not applicable | $3.2 .9$ <br> 1. Post Conditioning per Paragraph 6.10.2 |
| Short Time Overload | 6.11 | 4.7.10 | No Equivalent Test | 3.2.6 |
| Load Life | 6.12 | 4.7 .15 | $\frac{\text { 108A }}{\text { 1. Test Condition } \mathrm{D},+70^{\circ} \mathrm{C}}$ | 3.2 .10 |
| Terminal Strength | 6.13 | 4.7 .11 | $211 \mathrm{~A}$ <br> 1. Test Condition A (1/8 watt) -2 lbs. ( $0,91 \mathrm{~kg}$ ); others 5 lbs. ( $2,27 \mathrm{~kg}$ ). <br> 2. Test Condition D | 3.2.11 |
| Resistance to Solder Heat | 6.14 | 4.7.12 | $210 \mathrm{~A}$ <br> 1. Test Condition A for all styles except $1 / 3$ watt shall be $+250^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}$ | 3.2.12 |
| Solderability | 6.15 | 4.7.16 | 208C | 1. Test Condition 1 |
| Shock | 6.16 | 4.7.13 | 1. Test Condition 1 | No Equivalent Test |
| Vibration | 6.17 | 4.7.14 | $204 \mathrm{C}$ <br> 1. Test Condition D <br> 2. Vibrate 6 hours in each of two planes per Paragraph 6.17 .2 | No Equivalent Test |
| Pulse Applications | 6.18 | 6.5 | No Equivalent Test | No Equivalent Test |
| Color Code Solvent Resistance | 6.19 | No Equivalent Test | 1. Ultrasonic agitation in various solvents at $+40^{\circ} \mathrm{C}$. | No Equivalent Test |
| Conditioning | 7 | 4.4.2 1. Time and temperature per Page 30 | No Equivalent Procedure | 3.1.31. Time and Temperature per <br> Page 30 |

# Military Numbering System Fixed Resistors 

MIL-R-11 (RC) RC07GF153K

| RC07 Style/Power | GF <br> Characteristic <br> " G " $=70^{\circ} \mathrm{C}$ max. ambient temperature for full load operation. " F " = temperature coefficient which varies (with resistance) from $\pm 625 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to $\pm 3100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. |  |  | 153 Resistance Value |  | $\begin{gathered} \hline \mathrm{K} \\ \text { Tolerance } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (See Tables 1 and 2) |  |  | First tw | digits are significant, 3rd digit $153=15,000 \mathrm{Ohms}$ | mber of zeros." | (See Table 4) $K= \pm 10 \%$ |
| 17 MIL-R-39008 (RCR) RCR07G153JS |  |  |  |  |  |  |
| RCR07 Style/Power (See Tables 1 and 2) | $\mathbf{G}$ <br> Characteristic <br> " G " indicates a max. ambient temperature of $70^{\circ} \mathrm{C}$ for full load operation, and a TC which varies (with resistance) from $\pm 625 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to $\pm 1900 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. |  |  | 153 Resistance Value | $\underset{\text { Tolerance }}{\mathrm{J}}$ | Failure Rate |
|  |  |  |  | First two digits are significant, 3rd digit "number of zeros." $153=15,000 \mathrm{Ohms}$ | (See Table 4) $\mathrm{J}= \pm 5 \%$ | (See Table 5) $\begin{aligned} & S=.001 \% \\ & / 1000 \text { hours } \end{aligned}$ |
| MIL-R-10509 (RN) RN55D1003F |  |  |  |  |  |  |
| RN55 Style/Power (See Tables 1 and 2) | DCharacteristic(See Table 3)$\mathrm{D}= \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |  |  | 1003Resistance Valuee significant, 4th digit "number of zeros."$1003=100,000$ Ohms |  | F Tolerance (See Table 4) $F= \pm 1 \%$ |
| I MIL-R-55182 (RNR) RNR55H1003FS |  |  |  |  |  |  |
| RNR55Style, Terminal and Power(See Tables 1 and 2)RNR $=$ Solderable LeadsRNC $=$ Solderable/Weldable LeadsRNN $=$ Nickel Leads |  | $\mathbf{H}$Characteristic <br> (See Table 3)$\mathrm{H}= \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |  | 1003 Resistance Value | $\begin{gathered} \mathrm{F} \\ \text { Tolerance } \end{gathered}$ | Failure Rate |
|  |  | irst three digits are significant, th digit "number of zeros." $1003=100,000 \mathrm{Ohms}$ | (See Table 4) $\mathrm{F}= \pm 1 \%$ | (See Table 5) $\begin{aligned} & S=.001 \% \\ & / 1000 \text { hours } \end{aligned}$ |
| MIL-R-22684 (RL) RL07S153J |  |  |  |  |  |  |
| RL07 <br> Style/Power <br> (See Tables 1 and 2) | Terminal (Lead)"S" = Solderable |  | 153 Resistance Value <br> First two digits are significant, 3rd digit "number of zeros." $153=15,000 \mathrm{Ohms}$ |  |  | $\square$ <br> J Tolerance (See Table 4) $\mathrm{J}= \pm 5 \%$ |
| [ MIL-R-39017 (RLR) RLR07C1502GR |  |  |  |  |  |  |
| RLR07 Style/Power (See Tables 1 and 2) | Terminal (Lead) <br> " C " = Solderable/Weldable |  |  | 1502 Resistance Value <br> three digits are significant, digit "number of zeros." $1502=15,000 \mathrm{Ohms}$ | G Tolerance (See Table 4) $\mathrm{G}= \pm 2 \%$ | Failure Rate (See Table 5) $\mathrm{R}=.01 \%$ <br> / 1000 hours |

1 NOTE: The Established Reliability specification (i.e., MIL-R-39008, MIL-R-39017, and MIL-R-55182) supersede MIL-R-11, MIL-R-22684, and MIL-R-10509 respectively, for all new design. Resistors qualified to the three Established Reliability specifications may be substituted, without limitation, wherever the older MIL devices are specified.
TABLEE 1 - Resistor Style
RCR Fixed Composition Resistor, Established Reliability (MIL R-39008)
RL Fixed Film Resistor (MIL-R-22684)
RLR Fixed Film Resistor, Established Relisbility (MIL R-39017)
RN Fixed Resistor, High Stability (MIL R-10509)
RNR Fixed Film Resistor, Established Reliability (MIL-R-55182)

| BLE 2 - Resistor |  |  | TABLE 3 - Characteristics | TABLE 4 Tolerance |
| :---: | :---: | :---: | :---: | :---: |
| Nominal Body |  | Power | RN |  |
| Length $\times$ Dia. (in.) | Size | (at $70^{\circ} \mathrm{C}$ Unless Otherwise Stated) | B $\quad \pm 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ <br> C <br> $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{T} 2)$ | $\mathrm{K}= \pm 10 \%$ |
| RC - RCR - RL - RLR |  |  | D $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (T0, T1) | $J= \pm 5 \%$ |
| 145 $\times .062$ | 05 | 1/8 |  | $\begin{aligned} & \mathbf{G}= \pm 2 \% \\ & \mathbf{F}= \pm 1 \% \end{aligned}$ |
| . $250 \times .090$ | 07 | $1 / 4$ | $\underset{\text { FNR }}{\text { F }}$ | $\begin{aligned} & \mathbf{F}= \pm 1 \% \\ & \mathbf{D}= \pm 0.5 \% \end{aligned}$ |
| $.375 \times .138$ $.562 \times .225$ | 20 32 | $1 / 2$ 1 | RNR/ RNC | $\mathbf{C}= \pm 0.25 \%$ |
| $688 \times 138$ | 42 | 2 | $\mathrm{H} \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ( T 2 ) | $B= \pm 0.10 \%$ |
| RN (Characteristic C) - RNR |  |  | J $+25 \mathrm{ppm/} /{ }^{\circ} \mathrm{C}$ ( J 9 ) |  |
| . $150 \times .065$ | 50 | $1 / 20$ at $125^{\circ} \mathrm{C}$ | $\mathrm{K} \pm 100 \mathrm{ppmr}{ }^{\circ} \mathrm{C}(70$, J1) |  |
| $.250 \times .109$ $.375 \times .125$ | 55 60 | $1 / 10$ at $125^{\circ} \mathrm{C}$ | NOTE: There is no temperature coefficient designation for the RL numbering system, all units are $\pm 100$ | TABLE 5- |
| . $625 \times .188$ | 65 | $1 / 4$ at $125^{\circ} \mathrm{C}$ |  | Failure Rate |
| $.750 \times .250$ $1.062 \times 375$ | 70 75 | 1/2 at $125{ }^{\circ} \mathrm{C}$ |  | 1000 Hours |
| RN (Characteristic D) |  |  |  | Confidence) |
| . $250 \times .109$ | 55 |  |  | $\begin{aligned} & \mathbf{M}=1.0 \% \\ & \mathbf{P}=0.1 \% \end{aligned}$ |
| . $375 \times .125$ | 60 | $1 / 4$ |  | $\mathrm{R}=.01 \%$ |
| $.625 \times 188$ $.750 \times 250$ | 65 | 1/2 |  | $\mathrm{S}=001 \%$ |

# Interested in network variety? Select from a spectrum of 542 standards. 

Allen-Bradley has the popular configurations you need. Pull-ups. Pull-downs. Line Terminators. Networks to complement Core Memory Sense Amplifiers. TTL to ECL Translators. O-Pad Attenuators. R/2R Ladders. Interconnect Networks. All styles available from your Allen- Bradley Electronic Distributor. Call for specs or check your EEM Catalog. If you need specials, contact your local Allen-Bradley district office for fast turnaround. Ask for Publication EC5410-2.1. A-B is an experienced twin-film manufacturer, i.e. precision thin film and thick film.
 green-16 pin.


## Quality in the best tradition.



# resistor networks 

## THIN FILM (PRECISION) THICK FILM (CERMET)

comprehensive product index

| DESCRIPTION | TYPE | PAGE |
| :---: | :---: | :---: |
| $\square$ THIN FILM (PRECISION) NETWORKS |  |  |
| Precision Thin Film Resistor Networks R/2R Binary Code Ladder Networks 1-2-4-8 BCD Code Ladder Networks Current Summing Networks Resistor Networks for A/D - D/A Conversion Network Substrates | Series FN | 41 |
| Standard Voltage Divider Resistor Networks | Series FN207 FNPC207 | 51 |
| Application Notes |  |  |
| R/2R Ladder Networks |  | 45 |
| Voltage Divider Networks |  | 53 |
| Handling and Soldering Procedures |  | 56 |
| THICK FILM (CERMET) NETWORKS |  |  |
| Standard Ceramic I-SIP (single-in-line) | Series | 59 |
| Package Cermet Resistor Networks <br> Pull-up/Pull-down Termination <br> Parallel Termination <br> TTL to ECL Translator Network | 100-400 |  |
| 12 Standard Ceramic I-DIP (dual-in-line) | Series | 63 |
| Package Cermet Resistor Networks | 314-316 |  |
| Pull-up/Pull-down Termination |  |  |
| Parallel Termination |  |  |
| 8 Bit R/2R Ladder Networks |  |  |
| TTL to ECL Translator Network |  |  |
| Sense AMP/Interface |  |  |
| "O" Pad (Balanced $\pi$ ) Attenuators |  |  |
| Interconnect Networks |  |  |
| Custom Thick Film Networks | Consult Factory |  |
| Application Notes |  |  |
| Digital System Resistor Arrays |  | 71 |
| ECL Terminator Networks |  | 75 |
| Resistive Attenuator Pads |  | 77 |

1 NOT AVAILABLE FROM STOCK AT ELECTRONIC DISTRIBUTORS.

2 STANDARD VALUES OF I-DIP NETWORKS IN $2 \%$ TOLERANCE ARE AVAILABLE FROM STOCK AT ELECTRONIC DISTRIBUTORS.


SELECTOR GUIDE: STANDARD THICK FILM (CERMET) DIP RESISTOR NETWORKS

| $\begin{aligned} & 314 \mathrm{~A} \\ & 316 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 314 \mathrm{~B} \\ & 316 \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 314 \mathrm{E} \\ & 316 \mathrm{E} \end{aligned}$ | 316L08 | 314M110 <br> 314M120 <br> 314M125 | 314M130 | 316 T 110 | $\begin{aligned} & 314 \times 101 \\ & 316 \times 101 \end{aligned}$ | 3142 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APPLICATIONS |  |  |  |  |  |  |  |  |
| Pull-Up Resistor <br> Arrays for Unused TTL <br> Gates <br> Parallel High Speed Circuitry <br> Wired OR Configurations <br> Pull-Down <br> Applications <br> TTL.MOS <br> Interfacing <br> Digital Pulse <br> Squaring | Transmission Line <br> Termination <br> Power Gate Pull-Up <br> Current <br> Limiting <br> Logic Level <br> Translation | Digital Line Termination ECL and TTL Applications | 8 BIT R/2R <br> Ladder <br> Network for $D / A$ and $A / D$ Converter with Bi Polar or CMOS Switches | Complement the 7520 Series of Core Memory Sense Amps | Core-Memory Sense Line Applications with Two 711 Dual Voltage Comparators | TTL to ECL Translator Network | Interconnect Networks <br> Shorting <br> Applications <br> Matrix Interconnections <br> Test Plugs | Fixed Voltage Attenuation with Impedance Matching |

## resistor networks



SELECTOR GUIDE: STANDARD THICK FILM (CERMET) SIP RESISTOR NETWORKS

| 106 A | 106 B | 106 E |
| :--- | :--- | :--- |
| 108 A | 108 B | 108 E |
| 110 A | 110 B | 110 E |
| 406A | 406 B | 406 E |
| 408A | 408 B | 408 E |
| 410A | 410 B | 410 E |
| APPLICATIONS |  |  |
| Pull-Up Resistor |  |  |
| Arrays for | Transmission | Digital Line |
| Unused TTL | Line | Termination |
| Gates | Termination | ECL and TTL |
| Parallel High | Power Gate | Applications |
| Speed Circuitry | Pull-Up |  |
| Wired OR Con- | Current |  |
| figurations | Limiting |  |
| Pull-Down | Logic Level |  |
| Applications | Translation |  |
| TTL-MOS |  |  |
| Interfacing |  |  |
| Digital Pulse |  |  |
| Squaring |  |  |

Page Number 59

## THIN FILM (PRECISION) CUSTOM RESISTOR NETWORKS AND CHIP AND HYBRID NETWORK SUBSTRATES

## APPLICATIONS:

These precision networks are ideally suited for use on any electronic equipment requiring close tolerances and/or low temperature coefficient resistors. Some of these applications are listed below.

- Ladder networks
- Digital multimeters
- Current summing applications
- Precision attenuators
- $\mathrm{A} / \mathrm{D}$ and $\mathrm{D} / \mathrm{A}$ converters
- Communication equipment
- Precision voltage dividers
- Telemetry equipment
- Coding and decoding circuitry
- Measurement bridges
- Paging systems


## SELECTOR GUIDE: VOLTAGE DIVIDER NETWORK (Decade Attenuator) - FNPC207, FN207

Resistance Tolerance on Total Resistance ( $\mathrm{R}_{\mathrm{T}}$ ) at $25^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}+10$ Megohms $\pm 0.05 \%$
Ratio Tolerance at $+25^{\circ} \mathrm{C}$ and from 0 to 1000 volts:

$$
\begin{gathered}
\frac{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}}{\mathrm{R}_{\mathrm{T}}}=\begin{array}{c}
1 \text { Megohm } \\
10 \mathrm{Megohms}
\end{array}=0.1 \pm 0.03 \% \\
\frac{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}{\mathrm{R}_{\mathrm{T}}}=\begin{array}{c}
100 \mathrm{~K} \text { ohms } \\
10 \mathrm{Megohms}
\end{array}=0.01 \pm 0.03 \% \\
\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{\mathrm{T}}}=\begin{array}{c}
1 \mathrm{~K} \text { ohm } \\
10 \text { Megohms }
\end{array}=0.001 \pm 0.03 \% \\
\frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{T}}}=\begin{array}{c}
1 \mathrm{~K} \text { ohm } \\
10 \text { Megohms }
\end{array}=0.0001 \pm 0.03 \%
\end{gathered}
$$

# DIP, SIP and chip networks and discretes for virtually any resistor needs. 

Allen-Bradley can satisfy most-if not all-of your fixed resistor needs. Networks and discretes. Thin film, thick film and carbon composition. Standards where you expect customs. Examples: Our I-DIP cermet networks are available in 542 stock configurations. Our discrete carbon composition resistors are available in custom high ohmic values at a million megohms in standard small body sizes. Write for technical information today.

| RESISTOR <br> TYPE | RESISTANCE <br> RANGE | POWER <br> RATING | TOLERANCE | TCR |
| :---: | :---: | :---: | :---: | :---: |
| Carbon <br> Comp | 1 ohm to 100 megs <br> (custom to 1 million megs.) | 1/6W to 4 W <br> $@+70^{\circ} \mathrm{C}$ | $\pm 5 \%$ to $\pm 20 \%$ | Typically less than 250 <br> PPM $/{ }^{\circ} \mathrm{C}$ from $+15^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ |
| I-DIPs | 22 ohms to 1 meg <br> (customs for other values) | 100 to 500 mW <br> per resistor <br> @ $+70^{\circ} \mathrm{C}$ | $\pm 1 \%, \pm 2 \%$ | $\pm 100$ and $\pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ |
| I-SIPs | 22 ohms to 1 meg <br> (customs for other values) | 125 to 500 mW <br> per resistor <br> at $+70^{\circ} \mathrm{C}$ | $\pm 2 \%$ or $\pm 1$ ohm <br> whichever <br> is greater | $\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ |
| Chips | 50 ohms to 10 megs | 10 to 250 mW <br> per resistor <br> at $+125^{\circ} \mathrm{C}$ | as low as <br> $\pm 015 \%$ | $\pm 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ |



## Quality in the best tradition.



## SPECIFICATIONS

## Introduction

Allen-Bradley thin film resistor networks consist of integrated films of chromium cobalt vacuum deposited on specially selected glass substrates resulting in networks having precision tolerance and stability. They can be calibrated to tolerance at Allen-Bradley or they can be designed for functional (active) trimming by customer.
For additional information on chromium/cobalt technology refer to Allen-Bradley Publication EC90.

## General capabilities

Film stability - Unique chromium cobalt thin film provides consistent long term stability.
Interconnection reliability - Metal film interconnections and bonding pads are reliable; no soldered or welded joints.
Electrical uniformity - Resistance change due to temperature (TCR) is low and uniform across substrate (TCRT).
Performance repeatability - Network-tonetwork, circuit performance is reliable and repeatable.
Consistent quality - From prototype to high volume production, quality is a major factor.

## Series $=\mathrm{N}$ Precision Thin Film Custom Resistor Networks

## FEATURES

- 1 K Ohms to 10 Megohms
- $\pm 0.015 \%$ Tolerance
- $\pm 0.015 \%$ Ratio
- $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ TCR
- $\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ TCR Tracking
- Conformally Coated Package Styles
- Chip Resistor Networks


## Applications

These precision networks are ideally suited for use on any electronic equipment requiring close tolerances and/or low temperature coefficient resistors. Some of these applications are listed below.

- Ladder networks
- Digital multimeters
- Current summing applications
- Precision attenuators
- A/D and D/A converters
- Communication equipment
- Precision voltage dividers
- Telemetry equipment
- Coding and decoding circuitry
- Measurement bridges
- Paging systems

For application information refer to the following Allen-Bradley Application Notes:

- R/2R Ladder Networks: EC5510-4.2
- Voltage Divider Networks: EC5515-4.2

For handling and soldering procedures refer to
Allen-Bradley Product Data EC5570-5.1.

Resistance range -1 K ohms to 10 megohms standard. Single substrate range; 10,000 to 1 .
Tolerance (absolute) - As low as $\pm 0.015$ percent at $+25^{\circ} \mathrm{C}$.
Resistance matching or ratio - As low as $\pm 0.015$ percent at $+25^{\circ} \mathrm{C}$.
Temperature coefficient of resistance (TCR) $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ standard.
TCR tracking - Between resistors in the same network is $\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ standard.
Temperature ranges of operation $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military; $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ industrial. Other ranges available.

Temperature range of storage $--65^{\circ} \mathrm{C}$ to
$+175^{\circ} \mathrm{C}$. $+175^{\circ} \mathrm{C}$.
Power rating -50 milliwatts per resistor standard. Up to 250 milliwatts per resistor special. Power ratings specified at $+125^{\circ} \mathrm{C}$ derated linearly to 0 milliwatt per resistor at $+175^{\circ} \mathrm{C}$.
Frequency response - Excellent non-inductive high frequency characteristics. Fast rise time. Less than 100 nsec . for packaged precision thin film resistors.
Noise index - Measured on Quantech Model 315 MIL-STD-202D, Method 308, -60 db to -25 db . Shelf life stability (no load) $-\Delta R<0.005 \%$ per year.

## CHIP AND HYBRID NETWORK SUBSTRATE SPECIFICATIONS



Hybrid network substrates - Allen-Bradley hybrid network substrates contain resistors, bonding pads and interconnections used in producing hybrid networks. Allen-Bradley does not manufacture complete hybrid circuits, but does manufacture the basic hybrid network substrates.
Termination and bonding pad material - Gold, with a minimum thickness of 5000 A , is used for all termination pads, bonding pads and interconnections. This material is compatible with ultrasonic and thermocompression bonding methods for attaching gold or aluminum wire, integrated circuit dice, LID's or beam leaded IC's. Chip capacitors can be attached by reflow solder methods.
Substrate material - Corning 7059 glass (Barium Alumino Silicate-electrically inert [Alkali-free]) . 032 $\pm .005$ inch $(0,81 \quad 0,13 \mathrm{~mm})$ thick.
User trimmable option - Chip and hybrid network resistors can be trimmed to tolerance by Allen-Bradley or, if needed, resistors can be designed for active trimming by the user during final hybrid assembly operations to meet predetermined


Chip Resistor Network
$\mathrm{R}=$ Resistor $\mathrm{P}=$ Bonding Pad
functional requirements. The amount of adjustment available is dependent on the initial resistance value, resolution, final value and available substrate area. The active trimming results in a positive resistance change only and can be done by mechanical methods or a laser. These networks are designated as UTRN's (user trimmable resistor networks).
Standard substrate sizes (in inches) -

$$
\begin{array}{llll}
.150 \times .150 & .350 \times .150 & .200 \times .200 & .600 \times .200 \\
.250 \times .150 & .450 \times .150 & .400 \times .200 & .250 \times .250
\end{array}
$$

Bonding pad sizes -10 mils $\times 10$ mils (down to 5 mils $\times 5$ mils minimum).
Resistance range -1 K ohms to 10 megohms.
Tolerances - Absolute: as low as $\pm 0.015 \%$ at $+25^{\circ} \mathrm{C}$. Ratio: as low as $\pm 0.015 \%$ at $+25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{TCR}- \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
& \mathrm{TCRT}- \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Temperature ranges of operation $--55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Other ranges available. Power rating - Up to 50 mw per resistor.

## A/D - D/A Converter Networks



Binary Code - Summing Ladder Network


1-2-4-8 BCD Code Ladder Network


Binary Code - R/2R Voltage Ladder Network


Voltage Dividers


Matched Resistor Arrays


## Typical performance test capabilities

| Test Group | $\left\|\begin{array}{c} \text { Order } \\ \text { Of } \\ \text { Test } \end{array}\right\|$ | Examination or Test | Test Method | Post Test Requirements |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | Visual and Mechanical Examination | MIL-STD-883, Method 2008, Test Condition A. | In accordance with applicable requirements. |
|  | 2 | DC Resistance | MIL-STD-202, Method 303. |  |
| II | 1 | Temperature Cycling | MIL-STD-883, Method 1010, Test Condition B. | Resistance change $\pm 0.05$ percent maximum |
|  | 2 | Low Temperature Operation | MIL-R-10509F, Paragraph 4.6.5. | Resistance change $\pm 0.1$ percent maximum |
|  | 3 | Short Time Overload | MIL-R-10509F, Paragraph 4.6.6. | Resistance change $\pm 0.2$ percent maximum |
|  | 4 | Terminal Strength | MIL-STD-883, Method 2004, Test Condition $\mathrm{A}, 3 \mathrm{lb}$. | Resistance change $\pm 0.1$ percent maximum. |
|  | 5 | Resistance to Solvents | MIL-STD-202, Method 215. | Resistance change $\pm 0.05$ percent maximum. Markings shall remain legible. |
| III | 1 | Dielectric Withstanding Voltage | MIL-STD-202, Method 301, 500 V RMS. Method 105C, Test Condition B with 300 V RMS applied for $60 \pm 5 \mathrm{sec}$. | Resistance change $\pm 0.1$ percent maximum. |
|  | 2 | Insulation Resistance | MIL-STD-883, Method 1003, Test Condition D. | $10^{12}$ Ohms minimum. |
|  | 3 | Temperature Cycling | MIL-STD-883, Method 1010, Test Condition B. | Resistance change $\pm 0.05$ percent maximum. |
|  | 4 | Resistance to Soldering Heat | MIL-STD-202, Method 210, Test Condition B. | Resistance change $\pm 0.05$ percent maximum. |
|  | 5 | Moisture Resistance | MIL-STD-883, Method 1004, Figure 1004-1. Omit Paragraphs 3.1 and 3.6.1. | Resistance change $\pm 0.1$ percent maximum. |
| IV | 1 | Resistance Temperature Characteristic | MIL-STD-202, Method 304, (Over Specified Operating Temperature Range) | Within specified limits. |
|  | 2 | Life | MIL-STD-883, Method 1006, $125^{\circ} \mathrm{C}, 1000 \mathrm{hrs} .11 / 2$ hours on, $1 / 2$ hour off. | Resistance change $\pm 0.1$ percent maximum. |
| V | 1 | Solderability | MIL-STD-883, Method 2003. | Resistance change $\pm 0.1$ percent maximum. |
|  | 2 | Vibration, Fatigue | MIL-STD-883, Method 2005, Condition A. | Resistance change $\pm 0.05$ percent maximum. |
|  | 3 | Shock | $\begin{aligned} & \text { MIL-STD-202, Method 213A, } \\ & \text { Test Condition 1. } \end{aligned}$ | Resistance change $\pm 0.05$ percent maximum. |

INSPECTION CONDITIONS: Unless otherwise specified, all measurements are understood to be made at the following initial inspection conditions:

Normal atmospheric pressure.
Relative humidity of $40 \pm 10$ percent.
Ambient temperature of $24^{\circ} \pm 2^{\circ} \mathrm{C}$.

NOTE: During an inspection or qualification, all the networks shall be subjected to the inspections of Test Group I. The total samples are then divided into Groups II to V inclusive, and subjected to the tests and inspections of the particular group.

R/2R
Ladder
Network

by John Blanchard<br>Electronics Application Engineer

Synopsis - This application note discusses the terminology, operation, usage and design considerations of the $\mathrm{R} / 2 \mathrm{R}$ ladder network (Figure 1), one of the most commonly used precision resistor networks used for digital to analog (D/A) and analog to digital (A/D) conversion. For further information see AllenBradley Technical Publication EC5510-2.1.


Figure 1. N Bit R/2R Ladder Network
The basic R/2R ladder network - The term ladder network is derived from the ladder-like configuration of this class of circuits. The $\mathrm{R} / 2 \mathrm{R}$ ladder receives its name because it is composed of R -valued resistors in the series legs and 2 R -valued resistors in the shunt legs. In Figure 1, each of the positions numbered $1,2, \ldots, \mathrm{~N} \cdot 1, \mathrm{~N}$ is referred to as a bit. The bits of the ladder are the points at which input signals are presented to the ladder. The inputs may be either serial or parallel with the aid of various solid state registers. Position T, the terminating resistor, is always connected to ground. The function of the terminating resistor is to terminate the ladder such that the output impedance of the ladder is R as measured from the terminal labeled OUT to ground with all bits grounded and to provide the proper output voltages. The position labeled OUT is the point at which the output is taken from the $\mathrm{R} / 2 \mathrm{R}$ ladder. The output terminal is commonly used to drive an operational amplifier.
Ideal D/A conversion - The relative simplicity of $D / A$ conversion in comparison to $A / D$ conversion makes it convenient to use $\mathrm{D} / \mathrm{A}$ conversion for this discussion. In D/A conversion, digital information is presented to the bits of the ladder in the form of
zeros and ones. Common convention is that of positive logic in which ground represents a zero and a positive precision reference voltage represents a one. In order to change the input of a bit from a zero to a one or vice-versa, some form of switch is required. For the ideal case of perfect switches, i.e., one being a short circuit when closed and an open circuit when open, a bit is either tied to ground or to a voltage source depending upon the absence or presence of digital information at a bit respectively. To assist in this discussion, a four-bit ladder will be studied. To simplify matters, all resistors, switches, and the reference voltage will be considered as ideal elements.
The first case to be analyzed is the condition of a 1 applied to Bit 1 and 0 's applied to all other bits (Figure 2). Bit 1, as will be seen, contributes the most voltage to the output and is called the most significant bit (MSB). When the output voltage is measured for this input condition (the binary word is 1000 ), it will be $\mathrm{V}_{\text {ref }} / 2$. Thus, the voltage ratio of the output voltage to the input voltage for the MSB energized is nominally .5000000 . If the input condition is changed to 0100 (Bit 2 "ON" and all other bits "OFF"), the output voltage becomes $\mathrm{V}_{\text {ref }} / 4$ and the output voltage ratio becomes .2500000. Energizing Bit 3 with all other bits grounded provides a voltage ratio that again is half of the preceding voltage ratio or .1250000 . This


Figure 2. Four Bit R/2R Ladder
progression continues in that the voltage ratio for a given bit ideally is half that of the previous bit, thus making the circuit a binary $\mathrm{R} / 2 \mathrm{R}$ ladder.
Bit 4 in the example produces the smallest output voltage ratio (.0625000) and is called the least significant bit (LSB). The LSB voltage also represents the smallest voltage change that occurs at the output. For example, when $V_{\text {ref }}$ equals one volt, the change in the output voltage that results by applying $\mathrm{V}_{\text {ref }}$ to Bit 4 is 62.5 mV .
The principle of superposition applies to the $R / 2 R$ ladder because it is a linear circuit. For example, when both Bits 1 and 2 are energized to $V_{\text {ref }}$, the output voltage is a summation of the individual output voltages for each of the energized bits, i.e., $\mathrm{V}_{\text {ref }} / 2+\mathrm{V}_{\text {ref }} / 4=3 / 4 \mathrm{~V}_{\text {ref }}$. The superposition principle applies to any combination of energized bits.
The voltage ratio concept can be extended to any number of bits as shown in Table 1.
$\frac{\text { Bit No. }}{1(\mathrm{MSB})}$
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

$$
\begin{aligned}
& \text { Voltage Ratio } \frac{V_{\mathbf{o}}}{V_{\text {ref }}} \\
& \hline .5 \\
& .25 \\
& .125 \\
& .0625 \\
& .03125 \\
& .015625 \\
& .0078125 \\
& .0039625 \\
& .001953125 \\
& .0009765625 \\
& .00048828125 \\
& .000244140625 \\
& .0001220703125 \\
& .00006103515625 \\
& .000030517578125 \\
& .0000152587890625
\end{aligned}
$$

Table 1. Table of Output Voltage Ratios
It is obvious that as the number of bits increases, the LSB voltage decreases, i.e., the percent contribution that the LSB voltage makes to the output voltage becomes less and less. This results from the fact that the summation of the voltage ratios approaches unity, or alternately, with $V_{\text {ref }}=1$ volt and all bits in the 1 state, the output voltage approaches 1 volt. The condition in which all bits are energized is referred to as full scale operation of the ladder. The result is the full scale output voltage which can be expressed mathematically as in Equation 1:

$$
\text { Full Scale Output Voltage }=V_{\text {ref }} \times \sum_{i=1}^{n} \frac{1}{2^{i}}
$$

where $n=$ number of bits.

$$
\text { limit } V_{\text {ref }} \times \quad \begin{aligned}
& n \\
& \Sigma
\end{aligned} \frac{1}{2^{i}}=V_{\text {ref }}
$$

$n \rightarrow \infty \quad i=1$

$$
\text { Equation } 1
$$

As an example, the LSB of a 16 -bit ladder is only $15 \mu \mathrm{~V}$ for $\mathrm{V}_{\text {ref }}=1$ and it contributes only .0015 percent to the full scale output voltage.
Full scale accuracy - To this point the discussion has involved only ideal components. To relate to the real world, resistor inaccuracies and stray reactances must be taken into consideration. It now becomes important to determine how the accuracy of an R/2R ladder is specified. A normal accuracy specification for any $R / 2 R$ ladder is $\pm 1 / 2$ LSB. For example, this means that when an $n$ bit ladder has all of its bits energized to the 1 state with $V_{\text {ref }}$ equal to 1 volt, the output voltage is:

$$
\sum_{i=1}^{n} \frac{1}{2^{i}} \pm \frac{1}{2} L S B=\sum_{i=1}^{n} \frac{1}{2^{i}} \pm \frac{1}{2} \frac{1}{2^{n}}=\sum_{i=1}^{n} \frac{1}{2^{i}} \pm \frac{1}{2^{n}+1}
$$

Using the example of the 4 -bit ladder operating at full scale with $\mathrm{V}_{\text {ref }}=1$ volt, the output voltage for a $\pm 1 / 2$ LSB specification is $.93750 \pm .03125$ volts. The $\pm 1 / 2$ LSB accuracy specification is sufficient to insure that when the LSB is energized to the 1 state, the output it causes is indeed due to a voltage on the LSB and not due to resistor errors in the ladder. A tighter, but necessarily more costly, specification is $\pm 1 / 4 \mathrm{LSB}$ which requires that resistor errors be at least a factor of two less than those allowed for the $\therefore 1 / 2$ LSB specification.
In the real world, resistor inaccuracies affect the nominal voltage ratios of Table 1. In practice, the differences between the measured or actual voltage ratio and the nominal voltage ratio for a given bit become the concern. To determine the accuracy of a ladder, the voltage ratio errors are measured for all bits as illustrated for the 15 -bit $\mathrm{R} / 2 \mathrm{R}$ ladder in Table 2. The bit error column, labeled percent bit error, shows the voltage ratio errors for each bit as a percent of full scale.
Some bit errors have positive signs; others have negative signs. A worst case condition exists when all bits of like (positive or negative) accuracy are
energized at the same time. Therefore, the summation of all negative bit voltage ratio errors is compared with the sum of all positive bit voltage ratio errors. The larger of the two summations is chosen as the worst case combination of errors. In Table 2,the worst case error is -.00066 percent as related to full scale.
When the larger summation is less than 1/2 LSB of the ladder, the resistor errors are small enough for the ladder to function properly. In other words, the maximum error that the ladder output can have while operating at full scale is $\pm 1 / 2$ LSB. When it is recalled that an LSB represents a percent of full scale, ladder accuracies may be conveniently expressed in percent of full scale, or what is referred to as Full Scale Accuracy (FSA). For example, a $\pm 1 / 2$ LSB specification on a 12 -bit ladder is identical to .0122 percent FSA. In the example of Table 2, the ladder accuracy specification is $\pm .00066$ percent FSA.


Table 2. 15 Bit R/2R Ladder Actual Test Data
TCR and TCR tracking - Ladders are seldom used at only one temperature. More realistically a customer will specify a required accuracy for a particular temperature range, such as the industrial range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, or the military range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Hence, for an $\mathrm{R} / 2 \mathrm{R}$ ladder to have an accuracy of $\pm 1 / 2$ LSB over a given temperature range, the ladder resistors must have similar temperature coefficients of resistance (TCR). This means that the ladder resistors must track each other with temperature accurately enough so that the $1 / 2$ LSB accuracy holds anywhere in the specified temperature range. When temperature fluctuations are of concern, the FSA should be specified over a temperature range. For example, a

12 -bit ladder that must have $\pm 1 / 2$ LSB accuracy
from $0^{\circ} \mathrm{C}$ to $-70^{\circ} \mathrm{C}$ would be specified as $\pm .0122$ percent FSA over that range (see Table 1). Thus, it is not as important to specify TCR as it is to specify FSA over a temperature range.
TCR tracking is an important consideration, particularly when application resistors are fabricated on the same substrate to work in conjunction with the ladder. Common examples of application resistors are resistors that provide gain or offsets for operational amplifiers. They are usually matched to the output impedance of the ladder. In order to maintain tight matching over a temperature range, the TCR tracking between the resistors of the ladder and the application resistors is important.
A typical TCR tracking specification for AllenBradley thin film resistor networks is $\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This insures that no two resistors at $+125^{\circ} \mathrm{C}$ are matched any worse than .05 percent more than their room temperature matching. An increasingly more common yet necessarily more costly tracking specification is $\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over a $55^{\circ} \mathrm{C}$ to $-125^{\circ} \mathrm{C}$ temperature range. For example, the resistors associated with the operational amplifier of Figure 3 have been specified so as to have a room temperature gain of $2 \pm 0.1$ percent and a gain at $\rightarrow 125^{\circ} \mathrm{C}$ of $2 \pm 0.12$ percent. When the resistors are adjusted to a 0.1 percent match at $+25^{\circ} \mathrm{C}$, the match may change only an additional .02 percent


Figure 3. TCR Tracking Example
over the $100^{\circ} \mathrm{C}$ temperature rise, which is a change that would result from $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking. A more satisfactory and less costly way of specifying the resistors is to have a room temperature gain equal to $2+0.05$ percent and the gain at $+125^{\circ} \mathrm{C}$ equal to $2 \cdot 0.12$ percent. This effectively loosens the tracking specification to $7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, while, at the same time, does not tax adjustment capabilities. Trade-offs such as this are significant from both design and cost considerations.
Ladder resistance and switch resistances - The choice of the value for R in an $\mathrm{R} / 2 \mathrm{R}$ ladder is dependent on both the desired rise time of the output voltage and the type of switch chosen for connecting each of the bits to either ground or the reference voltage.
In general, the higher the value of R , the longer the rise time. This is due to stray capacitance associated with each resistor and its lead wires. The equation that expresses the 10 percent to 90 percent rise time or fall time for a resistor having stray capacitance is:

$$
10 \%-90 \% \text { rise time }=\mathrm{RC} \ln 9=2.2 \mathrm{RC}
$$

The capacitance associated with an Allen-Bradley thin film resistive element is in the 1.0 to 1.5 pF range. Thus, for a constant capacitance, the rise time becomes proportional to the value chosen for R.

Both the "ON" resistance and the current capabilities of the switches govern the choice of $R$. MOSFET switches, for example, are low power devices. Hence, the ladder resistance should be chosen so that the switch can safely conduct the current when a bit is energized.
Transistor switches generally can handle more current than MOS devices; and as a result, the value chosen for the ladder resistance is less than that when MOS switches are chosen. Regardless of the type of switch used, compensation for the "ON" resistance of the device must be made. To compensate for switch resistances, the "ON" value of the switch resistance ( T ) is subtracted from each 2R resistor of the ladder as shown in Figure 4. For example, given switches with an "ON" resistance of 10 ohms, an ideal $10 \mathrm{~K} / 20 \mathrm{~K}$ ladder becomes $10 \mathrm{~K} / 19.990 \mathrm{~K}$. These values then become the values specified for manufacture of the ladder. The "T" value need not necessarily be the same for each bit. When, for example, the switches for the first bits


Figure 4. 4-Bit R/2R Ladder With Compensation For Semiconductor Switch Resistances
differ from those for the last bits of the ladder, the " T " values differ. Resistor adjustment techniques make it posible to compensate for different switch resistances.
The magnitude of the "ON" resistance of the switch is important in determining the ladder resistance value. The "ON" resistance of typical switching transistors is 5.10 ohms , where a typical value for MOS devices is 250 ohms. These are nominal values only. Any deviations from nominal introduce unexpected errors in bit outputs for those bits that have been adjusted for the nominal value of the switch resistance. Thus, it becomes important to know not just the nominal switch resistance, but also the range of switch resistances to be encountered, so that any deviation from nominal contributes only a small error to each bit.
The result of this criterion is that for switches having high "ON" resistances, the ladder resistance value is considerably higher than that required for switches having low "ON" resistances. A good rule of thumb is to have switch resistances less than . 1 percent of the $2 R$ value. Further, since the TCR of semiconductor switches is considerably bigher than that of the ladder resistors, the TCR tracking of the

R and 2 R branches is adversely affected when the "ON" resistance is too large a percentage of the $2 R$ branches.
Once the ladder resistance value has been chosen, a tolerance must be assigned to the ladder. The tolerance of concern is that of the output impedance, $\mathrm{R}_{\text {out. }}$. In general, a ladder output impedance tolerance of $\pm 10$ percent or $\pm 20$ percent is adequate, simply because the performance of a ladder depends on resistor matching and not absolute tolerance. Since application resistors are customarily specified with relationship to the ladder output impedance, a loose tolerance $\mathrm{R}_{\text {out }}$ will not interfere with the proper performance of the application resistors. Further, by specifying a loose output impedance tolerance, overall ladder costs can be reduced.
Application resistors - Up to now, several points have been made with respect to application resistors. The first was that a room temperature matching or ratio specification must be made in addition to the TCR tracking specification. With the proper care, an application resistor can be specified such that it will perform as desired and take advantage of manufacturing techniques. Resistance ratio matching, however, is not the only method used for specifying application resistors. A second and less commonly used method involves a difference or voltage ratio error, instead of an actual percent match of the application resistor to the output impedance of the ladder. An example might illustrate a comparison of these two methods.


Figure 5. Ratio Matching R1 to $\mathrm{R}_{\text {out }}$ of Ladder
The measurement technique that is used to match R1 to Rout in Figure 5 provides one of the following ratios, depending on how the test equipment is connected:

Actual Output Voltage Ratio $=\frac{R 1}{R 1+R_{\text {out }}}$ or $\frac{R_{\text {out }}}{R 1+R_{\text {out }}}$

When R1 matches $\mathrm{R}_{\text {out }}$ perfectly, both the above voltage ratios are $.5000000\left(\mathrm{Rl}=\mathrm{R}_{\text {out }}\right)$. The hypothetical example below shows that the matching is not perfect:

| Nominal <br> Output <br> Voltage | Actual <br> Output <br> Voltage | Difference <br> or Voltage <br> Ratio | Percent <br> Match <br> of R1 to |
| :---: | :---: | :---: | :---: |
| Ratio | Ratio | Error | $\mathbf{R}_{\text {out }}$ |
| .500000 | .499878 | .000122 | $.0488 \%$ |

The nominal output voltage ratio represents the ideal situation where R1 has been trimmed to match $\mathrm{R}_{\text {out }}$ perfectly. The actual voltage ratio represents the behavior of application resistor R1 in relationship to the output impedance of the ladder. In the example, the actual output voltage ratio differs from the nominal by 122 ppm , which represents the voltage ratio error method of specifying the application resistor. However, the 122 ppm difference does not mean that there is a 122 ppm (. 0122 percent) resistance match to the ladder. To calculate the percent resistance match of R1 to $R_{\text {out }}$, the following equation is used:

$$
\text { Actual Voltage Ratio }=\frac{R 1}{R 1+R_{\text {out }}}
$$

Solving for $\frac{R_{\text {out }}}{R 1}$ the following is obtained:
Equation 2

$$
\frac{\mathrm{R}_{\text {out }}}{\mathrm{R1}}=\frac{1 \cdot \text { Actual Voltage Ratio }}{\substack{\text { Actual Voltage Ratio } \\ \text { Equation } 3}}
$$

When the numbers from the example are substituted in Equation 3, the resistance ratio match of R1 to Rout is .0488 percent and not .0122 percent! Thus, the method of specifying application resistor accuracy can be deceiving, particularly when a voltage ratio error is used as the specification. This is because the voltage ratio error can appear to be a much tighter specification than that of actual resistance ratio matching expressed in percent.
Power - Power is usually not a major concern when specifying ladders. This is because the voltages applied to the bits are in the range of a few volts to 12 or 15 volts. As a result, power dissipation is kept low and resistance change of the ladder resistors caused by self-heating is minimized. However, power considerations can be of concern for application resistors used as feedback elements for providing operational amplifier gain. With the operational amplifier summing point effectively at ground and connected for unity gain, for example, the full reference voltage can appear across the feedback resistor. To avoid detrimental self-heating effects, care should be taken to keep the maximum resistor dissipation below the rated power. Needless to say, the lower the dissipation, the less likely ladder performance will be degraded. Further, the lower the power levels, the easier it becomes to reduce the overall size of the ladder.
The number of bits - The selection of the number of bits a ladder is to have is effectively a specification for the resolution of the converter. For example, a specification of 0.1 percent resolution on the analog output of a converter requires a 10 -bit ladder ( $1 / 2^{10} \mathrm{x}$ $100 \%=0.0976 \%)$. The greater the number of bits, the better the resolution. For example, 12 -bits provide
.0244 percent while 14 -bits provide 0061 percent. However, the more bits there are, the more difficult it becomes to manufacture ladders with $\pm 1 / 2$ LSB accuracies, with the practical limit at present being 15 to 16 bits for an $\mathrm{R} / 2 \mathrm{R}$ ladder. It becomes extremely difficult to manufacture ladders to less than $=.001$ percent FSA at $+25^{\circ} \mathrm{C}$, regardless of the numbers of bits.
Advantages of $\mathrm{R} / 2 \mathrm{R}$ ladders - The $\mathrm{R} / 2 \mathrm{R}$ ladder configuration has several advantages that distinguish it from other types of ladders. Only two resistor values are required. From a manufacturing standpoint, this means that thin film deposition techniques can be utilized to their fullest advantages. The two values of resistors are in a 2 to 1 ratio, and hence, allow excellent TCR tracking and aging characteristics. The second major advantage is that the impedance seen at any bit looking toward the


Figure 6. R/2R Current Ladder
operational amplifier is fairly constant. The $\mathrm{R} / 2 \mathrm{R}$ ladder also possesses a certain versatility that other ladders do not. Figure 6 shows the dual of the circuit in Figure 1. It displays the same binary $\mathrm{R} / 2 \mathrm{R}$ ladder network that has been discussed, only here it is being driven by digital inputs derived from high impedance sources, i.e., current generators. Instead of an output voltage being of concern, an output current is fed to operational amplifier to generate the analog output. If it is desired to use an R/2R ladder as a current ladder, the manufacturer must be informed so that the resistor nodes are brought out of the package.

## A comparison of $\mathrm{R} / 2 \mathrm{R}$ ladder fabrication techniques -

- Thin film -

Thin film networks are made by vapor depositing a metal film on a substrate. By having all resistors on the same substrate, their characteristics closely match one another. The main advantages of thin film networks are that, in general, they have low TCR, tight TCR tracking, uniform aging, and the ability to be trimmed to very tight tolerances.

- Thick film -

Thick film networks are made by screen printing a cermet material on a substrate. Thick film ladders generally have a slightly higher TCR and TCR tracking and cannot be adjusted as tightly as thin
film ladders. Thick films still have a TCR that is far better than discrete carbon film or carbon composition resistors. The range for thick film TCR is $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to $\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and TCR tracking in the range of $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to $\pm 50$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

- Discrete resistor $\mathrm{R} / 2 \mathrm{R}$ ladder networks Discrete resistors may be used to make $\mathrm{R} / 2 \mathrm{R}$ ladder networks, and initially the cost of discretes versus networks may be attractive. However, the ladder assembly cost disadvantages presented by discretes outweigh the parts cost advantage. To manufacture a ladder using discretes, tedious sorting must be performed to obtain the required resistor matching. After sorting, the individual resistors must be assembled. The TCR tracking of the resistors may be so poor that the resistors would have to be sorted for TCR matching. Discretes may also be very inductive, which may result in problems with rise and settling time. Last, discretes age differently, and hence, cause overall ladder accuracy to change.


## GLOSSARY OF TERMS -

Application Resistor - Any resistor on the same substrate with a ladder that is not directly a part of the ladder, but that is matched or ratioed to the ladder output impedance.
Bit - Designation for the input leads of ladder networks.
Current Ladder - An R/2R ladder whose bits are all tied to ground and whose inputs are derived from current sources that drive the nodes of the ladder. See Figure 6.

Full Scale - The condition of ladder operation in which all bits are energized.
Full Scale Accuracy (FSA) - The maximum error encountered in a ladder as compared to the full scale of the ladder.
Ladder Network - A repetitive arrangement of precision resistors in a ladder-like configuration that assists in $D / A$ and $A / D$ conversion.

Least Significant Bit (LSB) - That bit in a ladder that produces the smallest output voltage ratio.
Most Significant Bit (MSB) - That bit in a ladder that produces the largest output voltage ratio. In an R/2R ladder, the MSB is always designated bit 1 and produces an ideal output voltage ratio of .5000000.
Resistor Matching or Ratio Matching - Maximum deviation permissible from the ratio of nominal resistance values of two resistors measured at a given temperature. It is usually specified in percent or ppm with one resistor selected as the relerence resistor.
"T" Resistance or Switch Resistance - That value of resistance that is removed from the 2R branches of a ladder to compensate for the "ON" resistance of the switches used with each bit.
Temperature Coefficient of Resistance (TCR) - TCR is the change in resistance due to a change in temperature. It has units of $\% /{ }^{\circ} \mathrm{C}$ or ppm/ ${ }^{\circ} \mathrm{C}$.

Temperature Coefficient of Resistance Tracking - TCR tracking is the difference in TCR of two or more resistors. As an example, when one resistor has a TCR of $+10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and another has a TCR of $+8 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, the two resistors track to $+2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$,
Terminating Resistor - Resistor located after the LSB connected to ground to give the ladder proper output impedance and provide the proper output voltage levels.
Thick Film - A manufacturing technique in which microelectronic circuits are fabricated by screen printing and firing cermet pastes onto a substrate.

Thin Film - A manufacturing technique in which microelectronic circuits are fabricated by vapor depositing the resistive materials onto a substrate.
Voltage Ratio - The ratio of the output voltage to the input voltage that is produced by energizing any bit or combination of bits of an R/2R ladder.

## SeriesFNPC207 FN207

## Precision <br> Voltage Divider



## SPECIFICATIONS

## Resistor connections



## Electrical capabilities

- Resistance Tolerance on Total Resistance ( $\mathrm{R}_{\mathrm{T}}$ ) at $+25^{\circ} \mathrm{C}$ :
$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}=10$ Megohms $\pm 0.05 \%$
- Ratio Tolerance at $+25^{\circ} \mathrm{C}$ and from 0 to 1000 volts:
$\frac{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}}{\mathrm{R}_{\mathrm{T}}}=\frac{1 \text { Megohm }}{10 \text { Megohms }}=0.1 \pm 0.03 \%$
$\frac{R_{1}+R_{2}+R_{3}}{R_{T}}=\frac{100 \mathrm{~K} \text { ohms }}{10 \text { Megohms }}=0.01 \pm 0.03 \%$
$\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{\mathrm{T}}}=\frac{10 \mathrm{~K} \text { ohms }}{10 \text { Megohms }}=0.001 \pm 0.03 \%$
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{T}}}=\frac{1 \mathrm{~K} \text { ohm }}{10 \text { Megohms }}=0.0001 \pm 0.03 \%$


## Standard

Thin Film Resistor Networks

## FEATURES

- 10 Megohms Range
- 5 Decades Attenuation
- .03\% Ratios
- 0 to 1000 Volts
- $\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Tracking
- Temperature Coefficient of Resistance $- \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- TCR Tracking $- \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Operating Voltage (between pins 1 and 6) 1000 volts maximum
- Operating Temperature $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Storage Temperature $--65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
- Operating Power at 1000 Volts:

9 Megohms - 90 mw
900 K ohms -9 mw 90 K ohms -.9 mw 9 K ohms -.09 mw 1 K ohms -.01 mw

- Voltage Coefficient - $0.01 \mathrm{ppm} /$ volt or less.


## Applications

- Input attenuation
- Range selection
- Digital instrumentation
- Digital voltmeters
- Digital multimeters

Refer to Application Note EC5515-4.2 for additional information on Voltage Divider Networks.

## Advantages

The conventional method of satisfying precision attenuator requirements in digital instrumentation has been with voltage dividers assembled from discrete wirewound or film resistors. The FN207/FNPC207 precision thin film voltage divider networks offer the following advantages over conventional voltage dividers:
Uniform characteristics - All resistors are deposited onto the substrate simultaneously to provide similar electrical and environmental behavior.
Reliability - All interconnections are metal film no soldered or welded joints.
Size reduction - The FN207/FNPC207 combine resistance values from 9 megohms to 1 K ohm in a single package. This size reduction offers an inherent savings in instrument space, resulting in reduced instrument size and cost.
Elimination of multimeter calibration adjustments - Precision resistance matching tolerances combined with low temperature characteristics

## DIMENSIONS

## Packaged (Diallylphthalate Case) FN207


provide attenuator accuracies which eliminate most of the normal calibration requirements in digital multimeters.
Cost savings - All resistors are deposited simultaneously on a single substrate, eliminating the cost of handling and ratio matching individual discrete resistors. In addition, there is only one part to stock, inspect, and assemble into a printed circuit board.

## Custom voltage dividers

In addition to the standard FN207/FNPC207 voltage divider listed herein, custom voltage divider networks can be manufactured with a large range of resistors and resistance values. They can be designed into a single package to meet specific applications in digital multimeter instrumentation. For more information on custom resistor network capabilities see AllenBradley Technical Publication EC5510-2.1

## Conformally coated (RTV Silicone) FNPC207



Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters.
TOLERANCES
Dimensional Tolerance $\pm .015(0,38)$
Except as Specified.
NOT TO SCALE

# Voltage <br> Divider Networks 

by John Blanchard<br>Electronics Application Engineer

Synopsis - This application note discusses resistive voltage divider networks and their use in digital instrumentation, particularly digital multimeters. An explanation of voltage divider operation and design guidelines is also given. (For supplementary information on the standard line of A-B FN207/FNPC207 voltage divider networks, see Allen-Bradley Technical Publication EC5515-2.1.)
The basic voltage divider - Two or more individual resistors connected in series comprise a voltage divider (see Figure 1). The purpose of this connection of resistors is to scale down or attenuate a voltage applied across the entire series combination. Thus, instead of working with the applied voltage directly, only a fraction of that voltage is utilized. Such attenuation is necessary when the magnitude of the applied voltage is greater than system components can handle directly.


Ideal voltage division - When voltage $\mathrm{V}_{\text {in }}$ is applied between ground $(G)$ and $+V$ (see Figure 1), the voltage $\left(\mathrm{V}_{\mathrm{i}}\right)$ that appears at any of the taps can be expressed as:

$$
\begin{equation*}
v_{i}=\frac{\sum_{j=i+1}^{n+1} R_{j}}{\sum_{j=1}^{n+1} R_{j}} \times V_{\text {in }} \tag{1}
\end{equation*}
$$

Where n is the
highest numbered tap.

A commonly used voltage divider is the $1 \mathrm{~K}, 9 \mathrm{~K}, 90 \mathrm{~K}$, $900 \mathrm{~K}, 9 \mathrm{M}$ string shown in Figure 2 which performs decade voltage division.


Figure 2. FN207/FNPC207 Decade Voltage Divider

Using equation 1, the tap voltages can be determined. For example, at pin 1 ,

$$
\begin{aligned}
V_{1}=\frac{\sum_{j=2}^{5} R j}{\sum_{j=1}^{5} R j} \times V_{\text {in }} & =\frac{900 K+90 K+9 K+1 K}{9 M+900 K+90 K+9 K+1 K} \times V_{\text {in }} \\
& =.1 \times V_{\text {in }} \text { Volts }
\end{aligned}
$$

Similarly, it can be shown that $\mathrm{V}_{2}=.01 \mathrm{~V}_{\text {in }}, \mathrm{V}_{3}=$ $.001 \mathrm{~V}_{\text {in }}$ and $\mathrm{V}_{4}=.0001 \mathrm{~V}_{\text {in }}$. This can be simplified to $10-\mathrm{I}_{\text {in }}$ where $\mathrm{i}=1,2,3$ or 4 .
Applications of thin film voltage dividers The most common application of thin film voltage dividers is in digital multimeters (DMM). Voltage dividers in these instruments provide a precision attenuator at the input terminals of the meter. Most voltage dividers used in this application have total resistances in the range of 10 megohms and, hence, provide the meter with a high input impedance. This is necessary for voltage measurements to avoid loading the source which is tied to the input terminals.
The most frequently occurring divider configuration is the decade voltage divider shown in Figure 2. Although decade dividers may differ in resistance value from meter to meter, they are similar in that they are high impedance devices that provide the decade division required for the decade range selection of the meter.


Figure 3. Simplified Kilohm Measurement Diagram in a Digital Multimeter

In larger rack-mounted DMM's the voltage divider is used for DC voltage and ohms measurements only. In the case of DC voltages, the voltage to be measured is applied directly to the divider. The proper divider tap voltage is utilized as a function of the meter range selected by the internal electronics of the meter. Digital multimeters that can measure voltages from fractions of a volt to 1500 volts DC must contain an input divider that can perform the division accurately at all voltage levels.

For ohms measurements, the input divider together with $V_{\text {ref }}$ define an accurate reference current ( $\mathrm{I}_{\text {ref }}$ ) as shown in Figure 3. The operational amplifier becomes a constant current generator for its feedback resistor, $\mathrm{R}_{\mathrm{X}}$, which is the resistor under test. In Figure 3 the range selection switch is set such that $\mathrm{I}_{\text {ref }}=\frac{\mathrm{V}_{\text {ref }}}{100 \mathrm{~K}}$. The voltage $\mathrm{V}_{\mathrm{x}}$ measured by the high input impedance JMM is proportional to the resistance $R_{X}\left(V_{x}=\frac{V_{\text {ref }}}{100 K} R_{X}\right)$, thus providing for the determination of $\mathrm{R}_{\mathrm{x}}$.

For other measurements, such as AC volts and millivolts, special functional boards are required and hence do not involve the input divider. In some smaller, portable DMM's, the voltage divider is used not only for DC voltage and ohms measurements, but AC voltage measurements as well.
Often thin film resistors constitute only a portion of the input voltage divider. For example, the DMM manufacturer may find that his requirements are such that thin film resistors need be used for only two decades of his four of five decade divider. AllenBradley has the capability and will fabricate thin film resistor networks for such portions of a divider.

Design considerations for voltage dividers Resistor tolerance is the first concern once the number of ranges has been selected for the meter.
There are three common ways of specifying resistor tolerance. The first is to specify one of the divider resistors as a reference that has an absolute tolerance and then to specify a ratio for the remaining resistors to the reference. A second method is to give all resistors of the divider absolute tolerances. The last and most preferable method of specification can be formulated by considering equation 1 which describes how a voltage divider performs functionally. In this instance an absolute tolerance is specified for the summation of all the resistors of the divider string with a ratio of the remaining resistors to the total. An example will illustrate this best.

$$
\begin{align*}
& \text { R1 R2 R3 R4 } \\
& -W-W-W-\quad R 1<R 2<R 3<R 4 \\
& \mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3+\mathrm{R} 4=\mathrm{R} \mathrm{~T} \pm \text { Absolute Tol. }  \tag{2}\\
& \frac{\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3}{\mathrm{R}_{\mathrm{T}}}=\mathrm{X} \pm \mathrm{A} \%  \tag{3}\\
& \frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R}_{\mathrm{T}}}=\mathrm{Y} \pm \mathrm{B} \%  \tag{4}\\
& \frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{T}}} \quad=\mathrm{Z} \pm \mathrm{C} \% \tag{5}
\end{align*}
$$

Customarily, the matching percentages in equations 3,4 and 5 represented by $A, B$ and $C$ respectively, are equal. Both the absolute and matching tolerances are usually in the range of 0.01 to 0.1 percent, depending on the overall accuracy of the instrument. A realistic lower limit for the absolute and matching tolerances is 0.01 percent.
Another design consideration for voltage dividers is power coefficient. To explain power coefficient, it must be realized that most dividers operate at voltages to 1000 volts DC. For the purpose of discussion, it is assumed that 1000 V are applied to the dividers shown in Figure 2. The following powers are dissipated in the divider resistors:
$9 \mathrm{M}=90 \mathrm{mw}$
$900 \mathrm{~K}=9 \mathrm{mw}$
$90 \mathrm{~K}=.9 \mathrm{mw}$
$9 \mathrm{~K}=.99 \mathrm{mw}$
$1 \mathrm{~K}=.01 \mathrm{mw}$

Given this power dissipation condition, the power dissipated per unit area that each resistor occupies is highest for the 9 M and lowest for the 1 K . As a result, the degree to which each resistor self-heats differs. The 9 M resistor heats the most and the 1 K
heats the least. It is this differential heating that is the source of power coefficient. The only circumstance in which power coefficient can be neglected is the condition where the TCR (temperature coefficient of resistance) of the network is zero $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$. For a zero TCR network, no resistance changes result due to self-heating. Such a condition, however, is unrealistic. Most resistors in discrete or network form have non-zero TCR's. Therefore a resistor changes a certain percentage equal to its TCR times the temperature above ambient that it has risen ( $\Delta \mathrm{T}$ ) due to self-heating, i.e., $\Delta \mathrm{R}(\%)=\mathrm{TCR} \times \triangle \mathrm{T}$. Considering the differential heating that occurs in the network at 1000 V , differential changes in the five resistors of the divider will occur. Fortunately, the only resistor with a significant change is the 9 M resistor. The other resistors change negligibly in comparison. The fact that the 9 M resistor changes does affect the voltage ratios that the divider produces at 1000 V . It is precisely this change in ratio that is referred to as power coefficient and is expressed as the change in voltage ratio, from low voltage (up to 100 V ) to high voltage (usually 1000 V ). Power coefficients are typically 0.03 percent over 100 to 1000 V in thin film networks. As in the case of matching and absolute tolerances, the power coefficient required is a function of the division accuracy that must be held over the voltage range of the meter.
Voltage coefficient is not significant in a thin film voltage divider. Typical voltage coefficients are in the range of $-.005 \mathrm{ppm} /$ Volt to $-.01 \mathrm{ppm} /$ Volt. Hence, for a 1000 volt change, voltage coefficient contributes roughly 10 ppm change to the division accuracy.
One last parameter that is of concern is TCR tracking, i.e, the degree to which resistors exhibit similar behavior as the temperature is varied. Typical TCR tracking for thin film resistor networks is 5 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$. An example demonstrates how TCR tracking affects division accuracy over the temperature range. Given two resistors in a network, 1 K and 9 K , as shown in Figure 4, the effect of 5 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking will be examined.


Figure 4. Example Network
Arbitrarily, the 9 K resistor is assigned a $0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ TCR and the 1 K a $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ TCR, which provides the $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking criterion. When the network resistors are adjusted to 0 percent off nominal at room temperature $\left(+25^{\circ} \mathrm{C}\right)$, the voltage at pin 1 is $0.1 \mathrm{~V}_{\mathrm{in}}$, which is also 0 percent off nominal. When the network is heated to $+75^{\circ} \mathrm{C}$, for example, the 9 K resistor does not change due to its $0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ TCR. The 1 K resistor, however, now becomes 1000.25 ohm [ 1000 ohm $\times\left(1+50^{\circ} \mathrm{C} \times 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ ]. At $+75^{\circ} \mathrm{C}$, the voltage at pin 1 becomes .1000225 $\mathrm{V}_{\text {in }}$ or .0225 percent off nominal due to TCR tracking.
To see why this takes place, a generalized equation for a two resistor divider where R1 has TCR1 and R2 has TCR2 is shown in Figure 5.


Figure 5. Two Resistor Divider
$\mathrm{At}+25^{\circ} \mathrm{C}$, the voltage at pin 1 is $\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}$ volts, and at T degrees centigrade above room temperature the voltage is $\mathrm{R} 2(1+\mathrm{T} \times$ TCR2 $)$
$\overline{\mathrm{R} 1(1+\mathrm{T} \times \mathrm{TCR} 1)+\mathrm{R} 2(1+\mathrm{T} \times \mathrm{TCR} 2)}$
in volts. It can easily be shown that the percent change in the voltage at pin 1 caused by raising the temperature T degrees centiarade is
$\left\{\frac{\mathrm{R} 2}{\frac{1}{\mathrm{R} 1+\mathrm{R} 2}\left[\frac{\mathrm{R} 1(1+\mathrm{T} \times \mathrm{TCR} 1)}{\mathrm{R} 2(1+\mathrm{T} \times \mathrm{TCR} 2)}\right]}{ }^{-1}\right\}^{(6)} \times 100 \%$
which can be simplified to:
$\left\{\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2+\mathrm{R} 1[1+\mathrm{T} \text { (TCR1-TCR2)] }}-1\right\} \times 100 \%$
The important parameter in the equation is the factor TCR1-TCR2, which is the tracking between R1 and R2. This equation is shown more for academic than practical reasons because it shows directly how TCR tracking affects voltage division accuracy. Equations similar to equation 7 can be derived for dividers involving more than two resistors, although they become complex quickly and are of little value as design tools. The best guideline for TCR tracking is experience which indicates that $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking is adequate for all but the most highly specialized dividers.

## Voltage divider guideline summary-

- Number of resistors in divider - This is a function of the application.
- Values of resistors in divider - This is a function of the voltage division ratios required at the taps and the meter input impedance.
- Resistor tolerances - absolute and ratio at $+25^{\circ} \mathrm{C}$ : The customary method is to place an absolute tolerance on the summation of all of the resistors of the divider string with a ratio of the remaining resistors to the total. See equations 2 through 5 on preceding page. The usual range for both absolute and matching tolerances is 0.01 to 0.1 percent at $+25^{\circ} \mathrm{C}$.
- Maximum applied voltage across the divider: Although the divider can handle higher voltages, 1000 volts is the maximum practical voltage to which Allen-Bradley will test and guarantee specification.
- Power Coefficient -0.03 percent is typical over 100 to 1000 V ,
- Voltage Coefficient - Allen-Bradley thin film resistor networks exhibit voltage coefficients from $-.005 \mathrm{ppm} /$ Volt to $-.01 \mathrm{ppm} /$ Volt.
- TCR: Standard $= \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
- TCR tracking: Standard $= \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.


## HANDLING AND SOLDERING PROCEDURES

The following recommended procedures have been established to minimize damage to thin film networks during handling and soldering. The procedures apply to packaged, conformally coated and chip networks. The packaged and conformally coated networks are available in either a modified flat pack, single in-line or dual inline styles. The chip networks are available with or without leads.

## A. CHIP (BARE SUBSTRATE) NETWORKS WITH OR WITHOUT LEADS

## Handling

1. The networks must be handled with utmost care using lint-free gloves and teflon-coated or plastic-tipped tweezers.
2. Care should be taken not to scratch the CrCo metal film because scratches on the resistive film may change the resistance and have an adverse effect on the load life stability and integrity of the film.
3. Dirt, grease or fingerprints may change the resistance and cause the resistors to fail due to electrolysis of the film under electrical load.

## Suggested Cleaning Methods

1. Dust can be removed from the networks by brushing the dust off with a soft camel hair brush.
2. Removal of dirt and grease
a. Bath of heated Alpha 563 (or equivalent) for five minutes (ultrasonic action preferred). Bath temperature should be $130^{\circ} \mathrm{F}$.
b. Two baths with ultrasonic action of heated Freon TMC for four minutes each. (Preferably in vapor dryer-degreaser.) Bath temperature should be $+97^{\circ} \mathrm{F}$.
Recommended Protection For Resistive Film
3. It is recommended that the thin film metal surfaces be coated with an RTV silicone adhesive-sealant (Dow Corning RTV3140) to protect the film from moisture and contamination from handling.
Lead Bending
4. The network leads being bent should be held firmly between the bending point and the
network body, so that minimum force is applied at the junction of the lead and the network body. The leads must be held very firmly by a clamping fixture, preferably lined with a material which is flexible but firm, such as leather.
5. The minimum distance between the bend point and the body of the network is $1 / 16$ inch.

## Lead Cutting

1. The network leads being cut should be held firmly between the cutting point and the network body, so that minimum force is applied at the junction of the lead and the network body. The leads must be held very firmly by a clamping fixture, preferably lined with a material which is flexible but firm, such as leather.
Attachment OI Substrates Without Leads
2. It is recommended that the substrates be attached with nonconductive epoxy die attachment material. A thin coat is recommended so that the substrate will not wobble during bonding. After bonding, the circuit can be coated with an RTV silicone adhesive-sealant (Dow Corning RTV3140).

## Bonding Of Substrates Without Leads

1. Ultrasonic or thermal-compression bonding with 1 mil gold wire is recommended. The networks are calibrated assuming the bonds are placed in the center of the bonding pads. It is necessary to bond as close to these centers as possible because the resistance changes as the position of the bonds change.
Soldering Of Substrates With Leads See Section D

## B. CONFORMALLY COATED NETWORKS WITH OR WITHOUT LEADS

## Handling

1. The networks must be handled with utmost care to avoid cracking of the substrate.

## Protection Of Resistive Film

1. The substrate is coated with an RTV silicone adhesive-sealant (Dow Corning 3140) to protect the resistive film from moisture and contamination from handling. If the resistive film becomes exposed, the same RTV silicone coating should be applied to the substrate.

## Lead Bending

1. The network leads being bent should be held firmly between the bending point and the network body, so that minimum force is applied at the junction of the lead and the network body. The leads must be held very firmly by a clamping fixture, preferably lined with a material which is flexible but firm, such as leather.
2. The minimum distance between the bend point and the body of the network is $1 / 16$ inch.

## Lead Cutting

1. The network leads being cut should be held firmly between the cutting point and the network body, so that minimum force is applied at the junction of the lead and the network body. The leads must be held very firmly by a clamping fixture, preferably lined with a material which is flexible but firm, such as leather.

Attachment Of Substrates Without Leads

1. It is recommended that the substrates be attached with nonconductive epoxy die attachment material. A thin coat is recommended so that the substrate will not wobble during bonding. After bonding, the circuit can be coated with an RTV silicone

## Thin Film <br> Networks

adhesive-sealant (Dow Corning RTV3140).

## Bonding Of Substrates Without Leads

1. Ultrasonic or thermal-compression bonding of 1 mil gold wire is recommended. The networks are calibrated assuming the bonds are placed in the center of the bonding pads. It is necessary to bond as close to these centers as possible because the resistance changes as the position of the bonds change.

## Soldering Of Networks With Leads

See Section D
C. PACKAGED NETWORKS

## Lead Bending

1. The network leads being bent should be held firmly between the bending point and the network body, so that minimum force is applied at the junction of the lead and the network body. The leads must be held very firmly by a clamping fixture, preferably lined with a material which is flexible but firm, such as leather.
2. The minimum distance between the bend point and the body of the network is $1 / 16$ inch.

## Lead Cutting

1. The network leads being cut should be held firmly between the cutting point and the network body, so that minimum force is applied at the junction of the lead and the network body. The leads must be held very firmly by a clamping fixture, preferably lined with a material which is flexible but firm, such as leather.
Soldering Of Packaged Networks
See Section D

## Additional Potting

1. Packaged networks are encased in diallyl phthalate boxes. The network inside the box has a protective layer of Dow Corning RTV3140 as a conformal coat. The network is then placed in the box and the air space is
filled with General Electric's 616 black RTV silicone rubber. If, however, it is desired to pot the packaged network, only those silicone rubbers of the General Electric 616 family or equivalent are recommended.

## D. SOLDERING OF CHIP NETWORKS WITH LEADS, CONFORMALLY COATED NETWORKS AND PACKAGED NETWORKS

Particular caution must be exercised when soldering chip and conformally coated thin film networks to printed circuit boards and other similar mounting bases. The following procedures are designed to minimize the effects of soldering on both the mechanical and electrical peformance of the network.

## Handling And Lead Bending

1. Refer to Sections $A$ and $B$ that detail the proper procedures for handling and bending the leads of Allen-Bradley thin film chip networks and conformally coated thin film networks respectively. Also, refer to Section C that details the proper procedure for bending the leads of packaged networks.

## Heat Sinking

1. Following insertion into the printed circuit board, all leads should be heat sinked at a point as close to solder fillet as possible. This is done to minimize the effect of the solder heat on the tightly trimmed thin film resistors. Further, in the event of an accidental overtemperature setting on a wave solderer or soldering iron, heat sinking will reduce the likelihood of reflowing the solder at the fillet. The maximum temperature that the lead and solder fillet should see during soldering is $+525^{\circ} \mathrm{F}$.

## Heat Application

1. The duration of heat application should be held to a minimum, with the maximum duration being 10 seconds.

## Solder

1. A recommended solder for use with AllenBradley thin film networks is $60 / 40$ solder which has a melting temperature of $+374^{\circ} \mathrm{F}$. This is the same solder that is used to coat the leads of Allen-Bradley thin film networks.

## Temperature Regulation

1. It is recommended that prior to soldering the thin film network, the temperature of the wave solderer or soldering iron be known and be capable of regulation. This is particularly true of soldering irons whose tip temperatures can be considerably higher than the $+525^{\circ} \mathrm{F}$ maximum for the network. So that the $+525^{\circ}$ F maximum is not exceeded, it is suggested that if an iron is to be used, it have some form of tip temperature regulation.

## Fluxes

1. Non-activated water white rosin fluxes or very mildly active fluxes should be sufficient to use during the lead attachment operation. Activated fluxes should be avoided because of the conductivity of their residues.

## Solvents

1. Following soldering, cleaning of the network may be accomplished by using perchlorethy. lene as a flux remover and Freon TF as a degreaser. Dwell time in either solvent should be in accordance with usual and recommended practices which generally does not exceed three minutes. Ultrasonic agitation can be used with proper procedures.

[^2]

## SPECIFICATIONS

## General capabilities

## I-SIP - Single In-Line Package:

- A unique new packaging concept for single in-line resistor networks.
- Provides standard cermet resistor networks and custom network designs.
- Standard circuits available in 6,8 and 10 pin packages and in two package profiles.


## Applications

- Pull-up and pull-down arrays
- Transmission line terminators
- Current limiting resistors
- ECL terminating networks
- A wide array of custom designs

For Applications Information refer to the following Allen-Bradley Application Notes:

- Digital System Resistor Arrays: EC5410-4.1
- ECL Terminator Networks: EC5410-4.2
- Resistive Attenuator Pads: EC5410-4.3


## Series 100 400 Cermet Resistor Networks

## I-SIP

Single In-Line Package

## FEATURES

- Solid Ceramic Body
- Triple-Strength Leads
- 0.100 Inch ( $2,54 \mathrm{~mm}$ ) Lead Spacing
- Two Package Heights
( 0.200 in., 0.350 in .)
- 6,8 and 10 Pins


## Tough new package



## Standard resistance values

Series 406A, 408A, 410A, 406B, 408B and 410B Resistor Networks

| R(Ohms) |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
| 22 | 220 | 2200 | 22 K | 220 K |
| 47 | 470 | 4700 | 47 K | 470 K |
| 100 | 1000 | 10 K | 100 K | 1 M |

For intermediate values between 22 ohms and 1 megohm not listed above, consult Allen-Bradley Co., Milwaukee, Wisconsin.
Series 406E, 408E and 410E Resistor Networks

| R1/R2 | Zo (Characteristic <br> Impedance) |
| :---: | :---: |
| $220 / 330$ | 132 |
| $3 \mathrm{~K} / 6.2 \mathrm{~K}$ | 2.02 K |

Series 106A, 108A, 110A, 106B, 108B, 110B, 106E, 108E and 110E Resistor Networks:
Consult Allen-Bradley Co., Milwaukee, Wisconsin for available resistor values.

## Cermet Resistor Networks

## Standard network specifications

Resistor tolerance $- \pm 2 \%$ or $\pm 1$ ohm whichever is greater.
Temperature coefficient of resistance $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Operating temperature range -
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Power - $\left.\left.\begin{array}{c}\text { Network } \\ \text { Series } \\ \text { Designation }\end{array}\right) \left\lvert\, \begin{array}{c}\text { I Power } \\ \text { Dissipation Rating } \\ \text { (up to } 70^{\circ} \mathrm{C} \text { Ambient) }\end{array}\right.\right]$
$11 \mathrm{At}+70^{\circ} \mathrm{C}$ power derates linearly from full rated power to 0 wattage at $+150^{\circ} \mathrm{C}$

2 Rated continuous working voltage (RCWV). based on nominal resistance $(\mathrm{R})$ in ohms. is $\sqrt{\text { Individual Resistor Power Rating (see Table) } \times \mathrm{R}}$ or 100 volts, whichever is less.
31 Rated continuous working voltage (RCWV). based on nominal resistance $(\mathrm{R})$ in ohms. is $\sqrt{\text { Individual Resistor Power Rating (see Table) } \times \mathrm{R}}$ or 150 volts, whichever is less.

## Standard network schematic diagrams



When an Allen-Bradley standard resistor network does not fit your exact application, consider our custom resistor networks. The following is a summary of Allen-Bradley custom single-in-line resistor network capabilities:
Resistance range -10 ohms to 10 megohms.
Requests for custom resistor networks can best be met when the total number of different resistor values is limited to a small number.
Tolerance (absolute) - Standard $\pm 2 \%$. Special to $\pm 1.0 \%$.
Resistance matching or ratio - Low as $\pm 1 \%$.
Temperature coefficient of resistance (TCR) $\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
TCR tracking - Depends on resistance range and number of resistors. Typical tracking is $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or $\pm 100 \mathrm{ppm} /{ }^{\circ}{ }^{\circ} \mathrm{C}$.
Temperature range of operation - Industrial $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ ), Military ( $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ) and other ranges available.

User-trimmable option - Resistor networks can be designed to permit the user to actively calibrate the networks in a system. Resistors can be trimmed under actual circuit operating conditions, providing in-circuit settability. Trimming methods include lasers, sand abrasion, and mechanical.

PACKAGE POWER RATINGS (WATTS)
(up to $70^{\circ} \mathrm{C}$ ambient) $\mathbf{n}$

| Package <br> Height <br> (Profile) | Number of Pins |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $\mathbf{6}$ | $\mathbf{8}$ | $\mathbf{1 0}$ |  |
| Low Profile <br> (.200" Max.) | .6 | 9 | 1.1 |  |
| High Profile <br> (.350" Max.) | 1.0 | 1.3 | 1.8 |  |

1 At $+70^{\circ} \mathrm{C}$ power derates linearly from full rated power to 0 wattage at $+150^{\circ} \mathrm{C}$.

## DIMENSIONS

## Low profile 100 series



High profile 400 series


Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters.

## TOLERANCES

Dimensional Tolerance $\pm .005(0,13)$
Angular Tolerance $\pm 5^{\circ}$ Except as Specified.

## Cermet Resistor Networks

## EXPLANATION OF PART NUMBERS



## Typical performance test capabilities

| Test <br> Group | Order Of Test | Examination or Test | Test Method Per MIL-R-83401 <br> (Paragraph) | Post Test Requirements |
| :---: | :---: | :---: | :---: | :---: |
| I | 1 | Visual and Mechanical Examination | 4.6 .2 | In accordance with applicable requirements. |
|  | 2 | Thermal Shock | 4.6 .3 | Resistance change $\pm 0.25$ percent maximum, |
|  | 3 | DC Resistance | 4.6 .5 | In accordance with applicable requirements. |
| II | 1 | Solderability | 4.6 .6 | Resistance change $\pm 0.25$ percent maximum |
|  | 2 | Resistance to Solvents | 4.6 .7 | Resistance change $\pm 0.25$ percent maximum. Marking shall remain legible. |
| III | 1 | Resistance Temperature Characteristic | 4.6 .8 | Within specified limits (normally $\pm 100$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or $\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ). |
|  | 2 | Low Temperature Operation | 4.6 .9 | Resistance change $\pm 0.25$ percent maximum. |
|  | 3 | Short Time Overload | 4.6.10 | Resistance change $\pm 0.25$ percent maximum. |
|  | 4 | Terminal Strength | 4.6.11 | Resistance change $\pm 0.25$ percent maximum. |
| IV | 1 | Dielectric Withstanding Voltage | 4.6.12 | Resistance change $\pm 0.25$ percent maximum. No mechanical damage, arcing or breakdown. |
|  | 2 | Insulation Resistance | 4.6 .13 | $10^{11}$ Ohms minimum. |
|  | 3 | Resistance to Soldering Heat | 4.6.14 | Resistance change $\pm 0.25$ percent maximum. |
|  | 4 | Moisture Resistance | 4.6.15 | Resistance change $\pm 0.5$ percent maximum. |
| V | 1 | Shock (Specified Pulse) | 4.6.16 | Resistance change $\pm 0.25$ percent maximum. |
|  | 2 | Vibration, High Frequency | 4.6.17 | Resistance change $\pm 0.25$ percent maximum. |
| VI | 1 | Life | 4.6 .18 | Resistance change $\pm 0.5$ percent maximum. |
| VII | 1 | High Temperature Exposure | 4.6.19 | Resistance change $\pm 0.5$ percent maximum. |
|  | 2 | Low Temperature Storage | 4.6.20 | Resistance change $\pm 0.25$ percent maximum. |

INSPECTION CONDITIONS: Unless otherwise specified, all measurements are understood to be made at the following initial inspection conditions:

Normal atmospheric pressure.
Relative humidity of $40 \pm 10$ percent.
Ambient temperature of $24^{\circ} \pm 2^{\circ} \mathrm{C}$.

NOTE: During an inspection or qualification, all the networks shall be subjected to the inspections of Test Group I. The total samples are then divided into Groups II to VII inclusive, and subjected to the tests and inspections of the particular group.

## Series 314, <br> 316 <br> Cermet Resistor Networks

I-DIP<br>Dual In-Line Package

FEATURES

- Solid Ceramic Body
- Solder Coated Leads
- 0.100 Inch $(2,54 \mathrm{~mm})$ Lead Spacing
- Low Profile
- 14, 16 and 18 Pin Construction
- Automatically Insertable


## SPECIFICATIONS

Standard network applications

| NETWORK |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 314 \mathrm{~A} \\ & 316 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 314 \mathrm{~B} \\ & 316 \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 314 \mathrm{E} \\ & 316 \mathrm{E} \end{aligned}$ | 316L08 | $\begin{aligned} & 314 \mathrm{M} 110 \\ & 314 \mathrm{M} 120 \\ & 314 \mathrm{M} 125 \end{aligned}$ | 314M130 | 316 T 110 | $\begin{aligned} & 314 \times 101 \\ & 316 \times 101 \end{aligned}$ | 3142 |
| APPLICATIONS |  |  |  |  |  |  |  |  |
| Pull.Up Resistor Arrays for Unused TTL Gates <br> Parallel High Speed Circuitry <br> Wired OR Configurations <br> Pull-Down Applications <br> TTL-MOS Interfacing <br> Digital Pulse Squaring | Transmission Line Termination <br> Power Gate Pull-Up <br> Current <br> Limiting <br> Logic Level <br> Translation | Digital Line Termination ECL and TTL Applications | 8 BIT R/2R <br> Ladder <br> Network for <br> $D / A$ and $A / D$ <br> Converter with Bi Polar or CMOS <br> Switches | Complement the 7520 Series of Core Memory Sense Amps | Core-Memory Sense Line Applications with Two 711 Dual Voltage Comparators | TTL to ECL <br> Translator Network | Interconnect <br> Networks <br> Shorting <br> Applications <br> Matrix <br> Interconnections <br> Test Plugs | Fixed Voltage Attenuation with Impedance Matching |

## Applications information

For application information refer to the following Allen-Bradley Application Notes:

- Digital System Resistor Arrays: EC5410-4.1
- ECL Terminator Networks: EC5410-4.2
- Resistive Attenuator Pads: EC5410-4.3


## Custom resistor networks

When a standard Allen-Bradley network does not meet your requirements, a custom network can be designed to your specifications. See suggestions as shown later in this publication.

## Applications

Series 314A and 316A -
Pull-Up resistor arrays for unused TTL gates.
Parallel high speed circuitry.
Wired OR configurations.
Pull-Down applications.
TTL-MOS interfacing.
Digital pulse squaring.
Series 314B and 316B
Transmission line termination.
Power gate pull-up.
Current limiting.
Logic level translation.

## Standard network schematic diagrams



Series 314A


Series 314B


Series 316A


Standard network specifications
Resistor tolerance $- \pm 2 \%$, also optional tolerance of $\pm 1 \%$ available for certain values.
Temperature coefficient of resistance -
$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Operating temperature range $-55^{\circ} \mathrm{C}$ to
$+125^{\circ} \mathrm{C}$.
Power dissipation rating - Up to $70^{\circ} \mathrm{C}$ ambient

| Series | Individual <br> Resistor Rating | Total <br> Package Rating |
| :---: | :---: | :---: |
| 314A | 125 mw | a |
| 314B | 250 mw | 1.6 watts |
| 316A | 125 mw | 1.6 watts |
| 316B | 250 mw | 1.8 watts |
|  |  | 1.8 watts |

1. At $+70^{\circ} \mathrm{C}$ power derates linearly from full rated power to 0 wattage at $+130^{\circ} \mathrm{C}$.
2] Rated continuous working voltage (RCWV), based on nominal resistance $(\mathrm{R})$ in ohms, is $\sqrt{125 \times R}$ or 150 volts, whichever is less.
3 Rated continuous working voltage (RCWV), based on nominal resistance $(\mathrm{R})$ in ohms, is $\sqrt{25 \times \mathrm{R}}$ or 350 volts, whichever is less.

Standard resistance values -

| R (Ohms) |  |  |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :---: |
| 22 | 110 | 560 | 3000 | 13 K | $\mathbf{6 8 K}$ |  |
| 24 | 120 | 620 | 3300 | 15 K | 75 K |  |
| 27 | 130 | 680 | 3600 | 16 K | 82 K |  |
| 30 | 150 | 750 | 3900 | 18 K | 91 K |  |
| 33 | 160 | 820 | 4300 | 20 K | 100 K |  |
| 36 | 180 | 910 | 4700 | 22 K | 120 K |  |
| 39 | 200 | 1000 | 5100 | 24 K | 150 K |  |
| 43 | 220 | 1100 | 5600 | 27 K | 180 K |  |
| 47 | 240 | 1200 | 6000 | 30 K | 220 K |  |
| 51 | 270 | 1300 | 6200 | 33 K | 270 K |  |
| 56 | 300 | 1500 | 6800 | 36 K | 330 K |  |
| 62 | 330 | 1600 | 7500 | 39 K | 390 K |  |
| 68 | 360 | 1800 | 8200 | 43 K | 470 K |  |
| 75 | 390 | 2000 | 9100 | 47 K | 560 K |  |
| 82 | 430 | 2200 | 10 K | 51 K | $\mathbf{6 8 0 K}$ |  |
| 91 | $\mathbf{4 7 0}$ | 2400 | 11 K | 56 K | 1 M |  |
| 100 | 510 | 2700 | 12 K | 62 K |  |  |

* Bold figures in above Table denote available in $\pm 1 \%$ Tolerance (Add F to Part Number).


## Explanation of part numbers

| Series <br> Designation <br> 314A <br> 314 B <br> 316A <br> 316B | Resistance Value <br> First two digits are significant figures <br> and the third indicates the number of <br> zeros following the first two digits - <br> Examples: $101=100$ Ohms <br> $102=1000$ Ohms <br> $122=1200$ Ohms |
| :--- | :--- |

## SERIES 314E AND 316E

## Applications

Series 314E and 316E -
Digital line termination.
ECL and TTL applications.

## Standard network schematic diagrams



Series 316E

## Standard network specifications

Resistor tolerance $- \pm 2 \%$.
Temperature coefficient of resistance $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Operating temperature range $--55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Power dissipation rating - Up to $70^{\circ} \mathrm{C}$ ambient $\mathbf{a}$.

| Series | Individual <br> Resistor Rating | Total <br> Package Rating |
| :---: | :---: | :---: |
| 314 E | 125 mw | 1.6 watts |
| 316 E | 125 mw | 1.8 watts |

1 At $+70^{\circ} \mathrm{C}$ power derates linearly from full rated power to 0 wattage at $+130^{\circ} \mathrm{C}$.

Standard resistance values -
R (Ohms)

| $\mathbf{R 1 / R 2}$ | $\mathbf{Z}_{\mathbf{o}}$(Characteristic <br> Impedance) | $\mathbf{R 1 / R 2}$ | $\mathbf{Z}_{\mathbf{o}}$(Characteristic <br> Impedance) |
| ---: | :---: | :---: | :---: |
| $81 / 130$ | 50 | $220 / 330$ | 132 |
| $120 / 200$ | 75 | $330 / 390$ | 179 |
| $90 / 660$ | 80 | $330 / 470$ | 194 |
| $130 / 210$ | 80 | $330 / 680$ | 222 |
| $160 / 260$ | 100 | $1.5 \mathrm{~K} / 3.3 \mathrm{~K}$ | 1.03 K |
| $220 / 270$ | 121 | $3 \mathrm{~K} / 6.2 \mathrm{~K}$ | 2.02 K |
| $180 / 390$ | 123 |  |  |

## Explanation of part numbers

| Series <br> Designation <br> 314 E <br> $\mathbf{3 1 6 E}$ | R1 R2 <br> Resistance Value |
| :--- | :--- |
| First two digits are significant figures |  |
| and the third indicates the number of |  |
| zeros following the first two digits - |  |
| Examples: $101=100$ Ohms |  |
| $102=1000$ Ohms |  |
| $122=1200$ Ohms |  |

SERIES 316L08

## Applications

Series 316L08-
8 bit $\mathrm{R} / 2 \mathrm{R}$ ladder network for $\mathrm{D} / \mathrm{A}$ and $\mathrm{A} / \mathrm{D}$ converter with bi-polar or CMOS switches.

Standard network schematic diagram


Series 316L08

## Standard network specifications

Ladder network resistance tolerance - 士. 2\%.
Temperature coefficient of resistance -
$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Operating temperature range $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Power dissipation rating - Up to $70^{\circ} \mathrm{C}$ ambient.

| Series | Individual <br> Resistor Rating | Total <br> Package Rating |
| :---: | :---: | :---: |
| 316L08 | 50 mw | 1.8 watts |

Ladder network accuracy - $\pm 1 / 2 \mathrm{LSB}$ from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Standard resistance values -

| $\overline{\mathbf{R} \text { (Ohms) }}$ |
| :---: |
| 25 K <br> 50 K <br> 100 K$\|$ |

## Explanation of part numbers



## SERIES 316T110

## Applications

Series 316T110 -
TTL to ECL translator network.
Standard network schematic diagram


Standard network specifications
Resistor tolerance $- \pm 2 \%$.
Temperature coefficient of resistance -
$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Operating temperature range $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Power dissipation rating - Up to $70^{\circ} \mathrm{C}$ ambient.

| Series | Individual <br> Resistor Rating |
| :---: | :---: |
| 316T110 | 125 mw |

SERIES 314M110, 314M120 AND 314M125

## Applications

Series 314M110, 314M120 and 314M125 -
Complement the 7520 series of core-memory sense amps.
Standard network schematic diagrams


Standard network specifications
Resistor tolerance -

$$
\begin{array}{lr}
314 \text { M110 } & \pm 2 \% ; \pm 5 \% \text { R8 only } \\
314 \text { M120 and 314M125 } & \pm 2 \% ; \pm 5 \% \text { R6 only }
\end{array}
$$

Temperature coefficient of resistance -

$$
\begin{array}{ll}
314 \mathrm{M} 110 & \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\
314 \mathrm{M} 120 \text { and } 314 \mathrm{M} 125 & \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{array}
$$

Operating temperature range $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Power dissipation rating - up to $70^{\circ} \mathrm{C}$ ambient.

| Series | Individual <br> Resistor Rating |
| :---: | :---: |
| 314 M 110 | 500 mw (R1 and R2) |
| 100 mw (R3 through R8) |  |
| 314M120 and 314M125 | 100 mw |

Resistance ratios -

| 314 M 110 | $\mathrm{R} 3 / \mathrm{R} 4 \pm 1.5 \%$ |
| :--- | :--- |
|  | $\mathrm{R} 5 / \mathrm{R} 6 \pm 1.5 \%$ |
|  | $\mathrm{R} 7 / \mathrm{R} 8 \pm 2 \%$ |
| 314 M 120 and 314 M 125 | $\mathrm{R} 1 / \mathrm{R} 2 \pm 1.5 \%$ |
|  | $\mathrm{R} 3 / \mathrm{R} 4 \pm 1.5 \%$ |
|  | $\mathrm{R} 5 / \mathrm{R} 6 \pm 1.5 \%$ |
|  | $\mathrm{R} 7 / \mathrm{R} 8 \pm 1.5 \%$ |
|  | $\mathrm{R} 9 / \mathrm{R} 10 \pm 1.5 \%$ |

Series 314M130 -
Core-memory sense line applications with two 711 dual voltage comparators.
Standard network schematic diagram


Standard network specifications
Resistor tolerance $- \pm 2 \%$.
Temperature coefficient of resistance $\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Operating temperature range $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Power dissipation rating - up to $70^{\circ} \mathrm{C}$ ambient.


## SERIES 314X101 AND 316X101

## Applications

Series 314X101 and 316X101 -
Interconnect networks.
Shorting applications.
Matrix interconnections.
Test plugs.
Standard network schematic diagrams


## Standard network specifications

Conductor resistance value $=1 \mathrm{ohm}$ maximum.
Operating temperature range $--55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

## SERIES 314Z

## Applications

Series 3142 -
Fixed voltage attenuation with impedance matching.

## Standard network schematic diagrams




314Z1001



314Z1002


Standard network specifications
Resistor tolerance $- \pm 1 \%$.
Temperature coefficient of resistance $\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Operating temperature range $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Characteristic impedance -600 ohms.
Attenuation tolerance ( db ) $- \pm 1 \%$.
Attenuation change due to temperature - $\pm 1 \%$ additional.
Frequency response - Flat to 1 MHz .
Power dissipation rating - Up to $70^{\circ} \mathrm{C}$ ambient.

| Series | Individual <br> Attenuator Rating |
| :---: | :---: |
| 314 Z | 150 mw at $70^{\circ} \mathrm{C}$ |

## CUSTOM RESISTOR NETWORKS

When an Allen-Bradley standard resistor network does not fit your exact application, consider our custom resistor networks. The following is a summary of Allen-Bradley custom dual in-line resistor network capabilities:
Resistance range - 10 ohms to 10 megohms. Requests for custom resistor networks can best be met when the total number of different resistor values is limited to a small number.
Tolerance (absolute) - Standard $\pm 2 \%$. Special to $\pm 1.0 \%$.
Resistance matching or ratio - Low as $\pm 1 \%$.
Temperature coefficient of resistance (TCR) $\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
TCR Tracking - Depends on resistance range and number of resistors. Typical tracking is $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Temperature range of operation - Industrial $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ ), Military ( $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ) and other ranges available.

## Power dissipation rating -

14 pin DIP -1.6 watts up to $70^{\circ} \mathrm{C}$; derated linearly to 0 watts at $130^{\circ} \mathrm{C}$.
16 pin DIP -1.8 watts up to $70^{\circ} \mathrm{C}$; derated linearly to 0 watts at $130^{\circ} \mathrm{C}$.
18 pin DIP -2.0 watts up to $70^{\circ} \mathrm{C}$; derated linearly to 0 watts at $130^{\circ} \mathrm{C}$.
User-trimmable option - Resistor networks can be designed to permit the user to actively calibrate the networks in a system. Resistors can be trimmed under actual circuit operating conditions, providing in-circuit settability. Trimming methods include lasers, sand abrasion, and mechanical.

## DIAGRAMS







| $\begin{aligned} & \text { Test } \\ & \text { Group } \end{aligned}$ | Order <br> Test | Examination or Test | Test Method Per MIL-R-83401 (Paragraph) | Post Test Requirements |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | Visual and Mechanical Examination | 4.6.2 | In accordance with applicable requirements. |
|  | 2 | Thermal Shock | 4.6 .3 | Resistance change $\pm 0.25$ percent maximum. |
|  | 3 | DC Resistance | 4.6.5 | In accordance with applicable requirements. |
| II | 1 | Solderability | 4.6.6 | Resistance change $\pm 0.25$ percent maximum. |
|  | 2 | Resistance to Solvents | 4.6.7 | Resistance change $\pm 0.25$ percent maximum. Marking shall remain legible. |
| III | 1 | Resistance Temperature Characteristic | 4.6.8 | Within specified limits (normally $\pm 100$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or $\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ). |
|  | 2 | Low Temperature Operation | 4.6.9 | Resistance change $\pm 0.25$ percent maximum. |
|  | 3 | Short Time Overload | 4.6.10 | Resistance change $\pm 0.25$ percent maximum. |
|  | 4 | Terminal Strength | 4.6.11 | Resistance change $\pm 0.25$ percent maximum. |
| IV | 1 | Dielectric Withstanding Voltage | 4.6.12 | Resistance change $\pm 0.25$ percent maximum. No mechanical damage, arcing or breakdown. |
|  | 2 | Insulation Resistance | 4.6.13 | $10^{11}$ Ohms minimum. |
|  | 3 | Resistance to Soldering Heat | 4.6.14 | Resistance change $\pm 0.25$ percent maximum. |
|  | 4 | Moisture Resistance | 4.6.15 | Resistance change $\pm 0.5$ percent maximum. |
| V | 1 | Shock (Specified Pulse) | 4.6.16 | Resistance change $\pm 0.25$ percent maximum. |
|  | 2 | Vibration, High Frequency | 4.6.17 | Resistance change $\pm 0.25$ percent maximum. |
| VI | 1 | Life | 4.6.18 | Resistance change $\pm 0.5$ percent maximum. |
| VII | 1 | High Temperature Exposure | 4.6.19 | Resistance change $\pm 0.5$ percent maximum. |
|  | 2 | Low Temperature Storage | 4.6.20 | Resistance change $\pm 0.25$ percent maximum. |

INSPECTION CONDITIONS: Unless otherwise specified, all measurements are understood to be made at the following initial inspection conditions:

Normal atmospheric pressure
Relative humidity of $40 \pm 10$ percent.
Ambient temperature of $24^{\circ} \pm 2^{\circ} \mathrm{C}$.

NOTE: During an inspection or qualification, all the networks shall be subjected to the inspections of Test Group I. The total samples are then divided into Groups II to VII inclusive, and subjected to the tests and inspections of the particular group.

## DIMENSIONS

| "A" Maximum |  | Number <br> of Leads |
| :---: | :---: | :---: |
| Decimal | Metric |  |
| .745 | 18,92 | 14 |
| .845 | 21,46 | 16 |
| .945 | 24,00 | 18 |



Basic dimensions in inches
Dimensions shown in parentheses are in millimeters.

## TOLERANCES

Dimensional Tolerance $\pm .005(0,13)$ Angular Tolerance $\pm 5^{\circ}$ Except as Specified.


## Standard Markings

A-B Logo
A-B Part Number
Date Code
Pin \#1

# Digital System <br> Resistor Arrays 

by Allen Salmela

Electronics Application Engineer

## Synopsis - This application note discusses prepackaged resistor arrays and their use in digital systems. Functional descriptions, design criteria, and applications for the arrays are provided. For supplementary information on digital system resistor arrays, see "ECL Terminator Networks" (Allen-Bradley Electronics Application Note EC5410-4.2) and AllenBradley Technical Publication EC5410-2.1.



Figure 1. Allen-Bradley 314A


Figure 2. Allen-Bradley 314B
The computer system designer may find the compactness of prepackaged resistor arrays advantageous in certain sections of a system. The applicable areas of use are numerous and the number of resistors required depends upon the design criteria employed. This note discusses the principal areas in a system where resistors are used and the advantages of using them in an array.
Commonly used resistor arrays are shown in Figures 1 and 2. An array of the type shown in Figure 1 is useful where one side of all the resistors is tied to a common voltage level. The array of Figure 2 is useful where resistor isolation is required.
The number of resistors used in a system depends upon the criteria employed by the designer and, in some cases, are dictated by the logic elements themselves. The following are a few examples of where these types of resistor arrays are employed in computer systems.

Pull-up - By common industry usage, a pull-up resistor is one connected to a positive supply voltage to provide a current source. It serves the several functions of providing added noise margin, improving rapid rise times or maintaining proper logic levels. Pull-ups may be placed at such locations as at the receiving end of long cables, at unused gate inputs, at open collector gates, or at a TTL to MOS interface.
Figure 3 demonstrates the use of a pull-up resistor array in conjunction with open collector TTL gates. The resistance must fall within a range that is dictated by the current requirements of the TTL logic levels. Typically, they fall between 300 Ohms and 4000 Ohms, as calculated below.


IC 1, IC 2 - Triple 3 Input NAND (Series 54, 74)
IC 3, IC 4 - Dual J-K Flip Flop (Series 54, 74)
Pull-Up - 13 Resistor Network (A-B 314A102)
Figure 3. Pull-Up Application

- Logical "1" level - For a proper logical "1" level, the resistance value must be low enough to ensure that sufficient load current and output off current is available. It's value, RL (max), may be calculated as follows:

$$
\mathrm{R}_{\mathrm{L}}(\max )=\frac{\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\text {out }}(1)}{\Sigma \mathrm{I}_{\text {out }}(1)+\Sigma \mathrm{I}_{\text {in }}(1)}
$$

## Resistor Arrays

## Where:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=\text { the bias voltage } \\
& \mathrm{V}_{\text {out }}(1)=\text { the logical " } 1 \text { " voltage level required. } \\
& \Sigma \mathrm{I}_{\text {out }(1)}=\text { the summation of the off level reverse } \\
& \\
& \\
& \Sigma \mathrm{I}_{\text {in }}(1)=\text { the summents required. } \\
& \text { required. }
\end{aligned}
$$

The result of a pull-up resistor of a value greater than that calculated above is an undesirable decrease in the $V_{\text {out }}{ }^{(1)}$ logical level.

- Logical "0" level - To maintain the proper logical " 0 " voltage level, the current through the pull-up resistor must be limited to the maximum sink current capability of one open collector output transistor, less the current being sinked from the TTL loads. This current determines the minimum value, $\mathrm{R}_{\mathrm{L}}(\mathrm{min})$, of the pull-up resistor and is calculated as follows:

$$
\mathrm{R}_{\mathrm{L}}(\min )=\frac{\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\text {out }}(0)}{\mathrm{I}_{\text {sink }}-\mathrm{I}_{\text {sink }} \text { from loads }}
$$

Where:
$V_{\text {out }}(0)=$ the required logical " 0 " voltage level.
$\mathrm{I}_{\text {sink }}=$ the maximum current sinking capability of one open collector output transistor.
$\mathrm{I}_{\text {sink }}$
from load $=$ the current sinked from the TTL loads.

The result of using a pull-up resistor of a value less than the calculated $\mathrm{R}_{\mathrm{L}}(\mathrm{min})$ is an undesirable increase in the required logical " 0 " voltage level.
Note that the pull-up resistor values $R_{L}(\mathrm{~min})$ and $\mathrm{R}_{\mathrm{L}}$ (max) depend upon the logic elements used and the configuration in which they are wired. Power dissipation will also be considered when selecting the value. If power dissipation is a significant factor, a value of $\mathrm{R}_{\mathrm{L}}$ near $\mathrm{R}_{\mathrm{L}}$ (max) rather than $\mathrm{R}_{\mathrm{L}}(\mathrm{min})$ would normally be chosen.
Pull-down - By common industry usage, a pulldown resistor is one connected to ground or a negative supply voltage to provide a current sink. It serves the function of allowing negative excursions of the outputs of associated logic elements such that the proper logical " 0 " level is obtained. Pull-downs are used as a pair with pull-ups for pulse squaring purposes, at the outputs of open collector ECL gates, and at MOS to TTL interfaces.

Figure 4 shows the use of pull-down resistors in conjunction with a MOS to TTL interface along with an associated level translating resistor (see below).
This arrangement is one of numerous schemes used in providing the interface match. The purpose of the pull-down resistor is to provide the necessary current sink for the TTL input.
The voltage applied to the TTL input from the resistor network should never exceed +5.5 volts.


IC 1 - MOS Device (ROM)
IC $2-$ TTL Device (Series 54, 74)
Pull-Down - 13 Resistor Network (A-B314A681)
Level Translator - 7 Resistor Network (A-B 314B152)
Figure 4. Pull-Down Application

Therefore:

$$
\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{0} \min }\left(\mathrm{~V}_{\mathrm{ss}}\right) \leq 5.5
$$

Where,

$$
\begin{aligned}
\mathrm{V}_{\mathrm{SS}} & =\text { bias voltage } \\
\mathrm{R}_{0}(\min )= & \text { minimum ON resistance of MOS } \\
& \text { output transistor }
\end{aligned}
$$

The voltage applied to the TTL input must exceed 2.4 volts to provide the required noise margin.

Therefore:

$$
\frac{R_{2}}{R_{1}+R_{2}+R_{0}(\max )}\left(V_{s s}\right) \geq 2.4
$$

Where,

$$
\mathrm{R}_{0}(\max )=\underset{\text { output transistor }}{\text { maximum }} \text { ON resistance of MOS }
$$

To preserve the " 0 " level of 0.4 volts, the low level impedance must sink the required TTL current.
Therefore:

$$
\mathrm{R}_{\mathrm{L}}(\max )=\mathrm{R}_{2} / /\left[\mathrm{R}_{1}+\mathrm{R}_{1}(\max )\right]
$$

Where,
$\mathrm{R}_{\mathrm{L}}($ max $)=$ known sink impedance
$R_{1}$ (max) $=$ sink resistance of MOS transistor
The value of $R_{1}$ and $R_{2}$ must satisfy the three above conditions for successful operation of this interface scheme.
Level translator - A level translating resistor, in series with a pull-up or pull-down resistor, provides a voltage divider function which is commonly used when interfacing two different types of logic elements. The purpose of this resistor is to establish the proper voltage level at the input of the device being driven. ECL to TTL and MOS to TTL are typical interfaces where a level translating resistor is required.
Figure 4 shows the use of a level translating resistor at a MOS to TTL interface. The resistance must satisfy the three conditions as described in the preceding pull-down resistor section.
Line termination - A termination resistor is one placed at the end of a transmission line for the purpose of matching the impedance of the load to that of the line in high-speed digital systems where pulse reflections from unterminated lines may cause erroneous switching of gates. Line termination techniques are numerous, such as single-ended terminations, parallel terminations, and reverse terminations.
Figure 5 shows the use of resistor arrays for terminating to a current sink (one resistor) and terminating to both a current source and current sink (two resistors). If the termination resistance, $\mathrm{R}_{\mathrm{T}}$, is too high, the line ripples when the level is switched (an inductive-like effect). An RT lower than the line impedance has a capacitive effect causing a lengthening of the pulse rise time.


Component List
Array \#1 - 13 Resistor Network (Allen-Bradley 314A151)
Array \#2 - 13 Resistor Network (Allen-Bradley 314A331)
Array \#3-13 Resistor Network (Allen-Bradley 314A101)
Figure 5. Line Termination Application

Current limiting - Current-limiting resistors are used in conjunction with such devices as LED's to keep the current at a safe value for the device, or to limit the current flowing through the associated integrated circuit.
The schematic of Figure 6 shows the use of a current-limiting resistor array in conjunction with a decoder/driver and seven segment LED display.


Figure 6. Current Limiting Application

The resistor value is calculated as follows:

$$
\mathrm{R}=\frac{\mathrm{V}_{\mathrm{Cc}}-\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{CE}} \text { (sat) }}{\mathrm{IF}_{\mathrm{F}}}
$$

Where:

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}} & =\text { bias voltage on the display } \\
\mathrm{VF}_{\mathrm{F}} & =\text { the voltage drop across the segment } \\
\mathrm{V}_{\mathrm{CE}} \text { (sat) } & \text { the low level logic voltage } \\
\mathrm{IF}_{\mathrm{F}} & =\text { the desired segment current }
\end{array}
$$

These parameters can be selected from the appropriate device literature.
Resistors are a significant cost element in a typical digital system. Real estate use, handling time and assembly time are the major cost factors. The incorporation of resistors in a prepackaged array can, in many cases, significantly reduce a system cost.
Resistor arrays are presently available for incorporation in digital systems. The characteristics of the arrays are:

- Standard packages: Dual in-line configurations compatible with automatic insertion equipment.
- High density: Up to 13 resistors in a standard 14 pin package.
- Low volume: Component inventories are small. The number of components to be inserted into the printed circuit boards is reduced.

In addition to the characteristics listed on the preceding page, these electrical characteristics are pertinent:

- Resistor arrays are available in many standard values.
- Resistor tolerances are available from a high of $\pm 10 \%$ to a more precise $\pm 2 \%$ or better.
- Temperature coefficient of resistance (TCR) and TCR tracking can be tailored to satisfy a specified requirement.
- Long term stability is excellent.

For further information on Allen-Bradley's digital system resistor arrays, contact your local AllenBradley Sales Office or the Electronics Marketing Department, Allen-Bradley, Milwaukee (414) 671-2000.

# ECL <br> Terminator Networks 

by John Blanchard<br>Electronics Application Engineer

Synopsis - This application note discusses resistive termination techniques that are employed with commonly used ECL families. Functional descriptions, design criteria, and applications for ECL terminator networks are provided. For supplementary information on terminator networks, see "Digital System Resistor Arrays," Allen-Bradley Electronics Application Note EC5410-4.1 and Technical Publication EC5410-2.1.


Figure 1. Series 314 E - ECL Terminator Network

In high speed logic systems that employ ECL (emitter coupled logic) elements wiring considerations become important. Even several inches of interconnection wire at the high speeds of today's ECL families can behave like a transmission line. Signal reflections and their effect on circuit operation become the main considerations. It is the purpose of this application note to discuss the use of resistive ECL terminator networks to eliminate the effects of unwanted signals and to obtain optimum system performance.
With rise and fall times typically in the 1 to 2 nsec range, overshoot and undershoot become of concern. This ringing results because of capacitance and inductance of the interconnection line and by capacitance presented by the gate being driven. The minimization of undershoot is particularly important because of the nominal 200 mV noise margin for
most ECL. A general rule is to limit undershoot to less than $10 \%$ of the logic swing. This will insure reasonable noise immunity for the gate. The overshoot should be limited to $35 \%$ of the logic swing to avoid saturating a gate input. By avoiding saturation, the typical ECL clock rates of 150 MHz and higher can be utilized. In order to reduce the effects of ringing and to utilize the speed advantages of ECL, transmission lines or other controlledimpedance systems are used for interconnection.
A resistor array that is designed for use with emitter coupled logic circuitry is shown in Figure 1. The circuit is referred to as an ECL terminator, and it serves a dual purpose. First, R2 is an emitter pulldown resistor and is normally tied to the most negative supply voltage. In its pull-down capacity, R2 supplies the proper line currents. R1 is the terminating resistor, which in parallel with R2, provides the characteristic impedance. $\mathrm{Z}_{\mathrm{O}}$, of the transmission line. R1 normally is tied to ground. By having the line terminated in $Z_{0}$, the reflection coefficient of the line is zero and no reflections occur. Thus, the tolerance on the characteristic impedance of the line determines what the tolerance should be on $Z_{0}$ of the terminator. Most coaxial cables have tolerances in the $2 \%$ to $5 \%$ range.
The values of R1 and R2 are in part dependent upon the current capabilities of the logic elements, power consumption and the characteristic impedance of the transmission line. The discussion here will be limited to MECL III, MECL 10000, Fairchild 9500, TT's SN10000 and ECL 2500 series, and Signetics 1000 because each of these is capable of driving transmission lines. The design criteria for determining R1 and R2 then becomes simplified to the use of simple equations. For the MECL III, MECL 10000, SN10000, Signetics 10000, and Fairchild 9500 ECL lines of circuits, the values of R1 and R2 may be chosen by knowing the characteristic impedance of the line and by using the criteria:

$$
\mathrm{R} 2=2.6 \mathrm{Z}_{\mathrm{O}} \text { and } \mathrm{R} 1=\frac{\mathrm{R} 2}{1.6}
$$

The following table lists common characteristic impedances and the corresponding values of R1 and R2:

| $\mathbf{Z}_{\mathbf{0}}$ (Ohms) | R1 (Ohms) | $\mathbf{R 2}^{\text {(Ohms) }}$ | Allen-Bradley <br> Part Number |
| :---: | :---: | :---: | :---: |
| 50 | 81 | 130 | 314 E 810131 |
| 75 | 120 | 200 | 314 E 121201 |
| 80 | 130 | 210 | 314 E 131211 |
| 100 | 160 | 260 | 314 E 161261 |

The recommended terminator resistance values for TI ECL2500 are a 270 Ohm pull-down resistor connected to VEE $(-3.2 \mathrm{~V})$ and a 50 Ohm terminating resistor connected to ground.
This type of ECL terminator (Figure 1) network is particularly advantageous when speed is the main concern. Neither the propagation delay nor the rise and fall time of the driving gate signal are affected by loading a long line that has been terminated properly. Another advantage is that there is no distortion of a pulse from a gate. Thus, instead of requiring that gates be lumped at the end of a line, they may be driven with short stubs at various points along the line. This is convenient for a large fanout.


Figure 2. Transmission Line Termination
Figure 2 shows a properly terminated line, where VEE is the ECL vendor's recommended bias supply voltage.


Figure 3. MECL II to MECL. III or MECL 10000 Interface
Figure 3 shows Motorola's recommended interface network between MECL II and MECL III or MECL 10000.


Figure 4. TI ECL2500 Series Termination

Figure 4 shows a 4 -bit binary counter using Tl ECL2500 series circuits. Each gate is loaded with a 270 Ohm pull-down resistor and a 50 Ohm terminating resistor.

For further information on Allen-Bradley's ECL terminator networks contact your local AllenBradley Sales Office or the Electronics Marketing Department, Allen-Bradley, Milwaukee. (414) 671. 2000.

Synopsis - This application note discusses resistive attenuator pads and their use in communication systems. Design criteria and typical applications for attenuator pads are provided. The primary pad discussed is the balanced $\pi$ " O " version. (For further information see Allen-Bradley Technical Publication EC5410-2.1.)


Modern film technology has made resistive attenuator pads in pre-assembled DIP arrays economical. These arrays are useful in the communication circuits where signal level reductions are required. This application note shows how attenuator pads are used in typical communication circuits.
The most commonly used resistive attenuator pads are shown in Figure 1.




Figure 1

# Resistive Attenuator Pads 

by Allen Salmela
Electronics Application Engineer

Values of the shunt and series resistors are a function of:

\author{

- Attenuator Configuration <br> - Input Impedance <br> - Output Impedance
}
- Attenuation Required

When these four parameters have been selected, formulas for the calculation of the resistive elements can be derived.

Example - A pad is required in a balanced system to match two equal impedances and to provide a given attenuation (dB). Since the system is balanced, a balanced pad is generally required, either the $\pi$ or T version. The balanced $\pi$ version shown in Figure 2 will be used in this example.


Figure 2
The input and output impedances being equal results in a symmetrical pad; that is the shunt legs are equal $\left(\mathrm{R}_{2}=\mathrm{R}_{3}\right)$, the series legs are equal ( $\mathrm{R}_{1}=$ R4), and the source, pad input, pad output and load impedances are equal $\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\text {in }}=\mathrm{Z}_{\mathrm{O}}=\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}\right)$.
The Thevenin equivalent input impedance is:
$Z_{\text {in }}=Z=R_{2} / /\left[2 R_{1}+\left(R_{2} / / Z_{L}\right)\right]$
A voltage divider ratio generates the following equation:
$V_{\text {in }} / V_{\mathrm{o}}=\left[2 \mathrm{R}_{1}+\left(\mathrm{R}_{2} / / \mathrm{Z}_{\mathrm{L}}\right)\right] /\left(\mathrm{R}_{2} / / \mathrm{Z}_{\mathrm{L}}\right)$

## Resistive Attenuator Pads

By solving (1) and (2) for $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$, the following relations are obtained.

$$
\mathrm{R}_{2}=\mathrm{Z}(\mathrm{~A}+1) /(\mathrm{A}-1) \quad \mathrm{R}_{1}=\mathrm{Z}(\mathrm{~A}+1)(\mathrm{A}-1) / 4 \mathrm{~A}
$$

Where:

$$
\mathrm{A}=\mathrm{V}_{\mathrm{in}} / \mathrm{V}_{\mathrm{O}}
$$

The value of $A$ can be determined from the following pad relationship:

$$
|\mathrm{dB}|=20 \log 10\left(\mathrm{~V}_{\mathrm{in}} / \mathrm{V}_{\mathrm{o}}\right)
$$

Similar formulas for the calculation of the shunt and series resistors of the remaining three networks, shown in Figure 1, are listed in Table 1. The equations again are true only if the input and output impedances are equal.

| Pad Type | Series Resistor $\left(R_{1}\right)$ | Shunt Resistor $\left(R_{2}\right)$ |
| :--- | :--- | :--- |
| Unbalanced T | $R_{1}=Z(A-1) /(A+1)$ | $R_{2}=2 A Z /(A \quad 2 \quad-1$ |
| Balanced T $(H)$ | $R_{1}=Z(A-1) /[2(A+1)]$ | $R_{2}=2 A Z /(A \quad 2-1$ |
| $R_{1}=Z(A 2-1) / 2 A$ | $R_{2}=Z(A+1) /(A-1)$ |  |

Table 1
The derivation becomes more complex in the case of unequal input and output impedances. Detailed calculations are available in the appropriate engineering handbooks.


Transmission Line
P1 - Allen-Bradley Part No 314Z1001
P2 - Allen-Bradley Part No. 31421002
Figure 3
Resistive pads are commonly used in two-wire switching systems to adjust for a desired signal level, as in Figure 3. Here we are considering the sending end terminals of this network to be the system zero transmission level point (OTLP). All other signal levels in the system are relative to this reference level and are appropriately labeled dBr (decibel relative). Since the signal level out of the transmitter in the above example is +7 dBr , the attenuator pad, P1, is inserted to reduce the sending end level to the
desired OTLP. At the receiving end of the line, the summation of the losses in the line plus that inserted by the pad, P 2 , reduces the signal level to the -16 dBr desired at the receiver. A degree of variability may be required in pads P1 and P2 if the output level varies from transmitter to transmitter and the losses vary from line to line.
Repeaters (amplifiers) and an associated balanced attenuator are commonly used in transmission networks to add gain if signal levels are below a minimum requirement. In the example of Figure 4, the signal level at point $A$ is below the desired -4 dBr minimum. A repeater, with a gain of +23 db (for example), is inserted in the line, thus increasing the signal level to approximately +19 dBr at Point B. A balanced $\pi$ attenuator pad, Pl , is inserted to reduce the signal level to the 0 dBr value required at Point C .


P1 - Allen-Bradley Part No. 31421001 and 31421002
Figure 4
In the above examples, balanced pads with selectable attenuation are required. This is typically provided by DIP pads shown in Figure 5. By cascading attenuator pads, attenuation selectable from 0.5 dB to 31.5 dB in 0.5 dB steps can be obtained. Modern film technology has made these pads available in the prepackaged arrays diagramed in Figure 5.


Figure 5
For further information on Allen-Bradley's resistive attenuator pads, contact your local Allen-Bradley Sales Office or the Electronics Marketing Department, Allen-Bradley, Milwaukee, (414) 671-2000.


CERMET
CONDUCTIVE PLASTIC HOT-MOLDED
COMPOSITION
comprehensive product index

| DESCRIPTION | TYPE | PAGE |
| :---: | :---: | :---: |
| CERMET |  |  |
| $\begin{aligned} & \text { 3/8 (0.375) Inch }(9,52 \mathrm{~mm}) \text { Diameter - } \\ & \text { 1.0 Watt }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Type SP | 132 |
| $\begin{aligned} & 5 / 8(0.625) \text { Inch }(15,88 \mathrm{~mm}) \text { Square - } \\ & \text { 1.0 Watt }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Series 72 MOD POT* | 142 |
| 5/8 (0.625) Inch ( $15,88 \mathrm{~mm}$ ) Square 2.0 Watts $\left(70^{\circ} \mathrm{C}\right)$ | Series 70 MOD POT* | 142 |
| 5/8 (0.625) Inch ( $15,88 \mathrm{~mm}$ ) Square 2.0 Watts ( $70^{\circ} \mathrm{C}$ ) | Series 73 MOD POT* | 142 |
| CONDUCTIVE PLASTIC |  |  |
| $10,0 \mathrm{~mm}$ Square - 0.1 Watt ( $40^{\circ} \mathrm{C}$ ) | Type M MIN METRIC* | 114 |
| $\begin{aligned} & \text { 5/8 (0.625) Inch }(15,88 \mathrm{~mm}) \text { Square - } \\ & 0.25 \text { Watt }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Series 72 <br> MOD POT* | 142 |
| $\begin{aligned} & \text { 5/8 (0.625) Inch ( } 15,88 \mathrm{~mm} \text { ) Square - } \\ & \text { 0.5 Watt }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Series 70 MOD POT* | 142 |
| $\begin{aligned} & 5 / 8 \text { ( } 0.625 \text { Inch }(15,88 \mathrm{~mm}) \text { Square - } \\ & \text { 0.5 Watt }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Series 73 <br> MOD POT* | 142 |
| HOT-MOLDED COMPOSITION |  |  |
| $\begin{aligned} & \text { 1/2 (0.5) Inch }(12,70 \mathrm{~mm}) \text { Diameter - } \\ & 0.5 \text { Watt }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Type G (Style RV6) | 83 |
| $1 / 2(0.5)$ Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) | Type W | 118 |
| $1 / 2(0.5)$ Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) | $\begin{gathered} \text { Type GD } \\ \text { (Dual) } \end{gathered}$ | 128 |
| $1 / 2(0.5)$ Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) | Type WR | 136 |
| $1 / 2(0.5)$ Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.8 Watt ( $70^{\circ} \mathrm{C}$ ) | Type L | 108 |
| 1-5/32 (1.156) Inch ( $29,36 \mathrm{~mm}$ ) Diameter 2.25 Watts ( $70^{\circ} \mathrm{C}$ ) | a Type J (Style RV4) | 91 |
| $\begin{aligned} & \text { 1.5/32 (1.156) Inch }(29,36 \mathrm{~mm}) \text { Diameter - } \\ & 2.25 \text { Watts }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Type EJ <br> (Extra Life) | 124 |
| 1.5/32 (1.156) Inch ( $29,36 \mathrm{~mm}$ ) Diameter 3.0 Watts ( $70^{\circ} \mathrm{C}$ ) | Type K | 100 |
| $\begin{aligned} & \text { 5/8 (0.625) Inch ( } 15,88 \mathrm{~mm} \text { ) Square - } \\ & \text { 0.5 Watt }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Series 72 MOD POT* | 142 |
| 5/8 (0.625) Inch $(15,88 \mathrm{~mm})$ Square - 0.75 Watt $\left(70^{\circ} \mathrm{C}\right) 1.0$ Watt $\left(40^{\circ} \mathrm{C}\right)$ | Series 73 MOD POT* | 142 |
| $\begin{aligned} & \text { 5/8 (0.625) Inch ( } 15,88 \mathrm{~mm} \text { ) Square - } \\ & \text { 1.0 Watt }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Series 70 MOD POT* | 142 |
| MILITARY NUMBERING SYSTEM |  | 154 |
| - Suited for adjustable attenuator applications Details in adjustable attenuator section. |  |  |

## panel potentiometers

SERIES 70 MOD POT*. Modular design innovated by Allen Bradley offers almost unlimited combinations: single, dual, triple or quadruple sections. Options include PC or solder lug terminals, variety of switches, vernier drives, concentric shafts, hotmolded composition, cermet or conductive plastic resistance elements.

SERIES 72 MOD POT*: Similar to Series 70, except the bushing and shaft are nonmetallic. Available in single or dual combination only.


SERIES 73 MOD POT*: Similar to Series 70, except the bushing is of a more economical design. Available in single or dual combination only.


SELECTOR GUIDE:

| Type | Page Number | Resistance Element | Resistance <br> Range and <br> Tolerance | Power <br> Rating <br> (Linear <br> Taper) | Voltage Rating (RMS or DC) | Operating Temperature Range | Number of Sections Available | Case Dimensions in Inches (millimeters) | Enclosure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series 70 | 142 | Cermet | 100 Ohms to 5 Megohms $\pm 10 \%$ | $\begin{aligned} & \text { 2.0 Watts } \\ & \text { at } 70^{\circ} \mathrm{C} \end{aligned}$ | 350 V | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} 1,2 \\ 3 \text { or } 4 \end{gathered}$ | $0.625(15,88)$ <br> Square <br> Lug Terminals $0.594(15,08)$ Deep Pin Terminals $0.625(15,88)$ Deep (Single Section) | Dust and Splash Resistant |
|  |  | Composition | 50 Ohms to 10 Megohms $\pm 10 \%, \pm 20 \%$ | 1.0 Watt <br> at $70^{\circ} \mathrm{C}$ |  | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +120^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |
|  |  | Conductive Plastic | $\begin{array}{\|c} 100 \text { Ohms to } \\ 1 \mathrm{Megohm} \\ \pm 10 \%, \pm 20 \% \end{array}$ | 0.5 Watt <br> at $70^{\circ} \mathrm{C}$ |  |  |  |  |  |
| Series 72 | 142 | Cermet | 100 Ohms to 5 Megohms $\pm 10 \%$ | 1.0 Watt at $70^{\circ} \mathrm{C}$ |  |  | 1 or 2 |  |  |
|  |  | Composition | 50 Ohms to 10 Megohms $\pm 10 \%, \pm 20 \%$ | 0.5 Watt <br> at $70^{\circ} \mathrm{C}$ |  | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +100^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |
|  |  | Conductive Plastic | $\begin{gathered} 100 \text { Ohms to } \\ 1 \mathrm{Megohm} \\ \pm 10 \%, \pm 20 \% \end{gathered}$ | $\begin{aligned} & \text { 0.25 Watt } \\ & \text { at } 70^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |  |  |
| Series 73 | 142 | Cermet | 100 Ohms to 5 Megohms $\pm 10 \%$ | 2.0 Watts <br> at $70^{\circ} \mathrm{C}$ |  | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +120^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |
|  |  | Composition | 50 Ohms to 10 Megohms $\pm 10 \%, \pm 20 \%$ | $\begin{aligned} & \text { 0.75 Watt } \\ & \text { at } 70^{\circ} \mathrm{C} \\ & 1.0 \mathrm{Watt} \\ & \text { at } 40^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |  |  |
|  |  | Conductive Plastic | $\begin{aligned} & 100 \text { Ohms to } \\ & 1 \text { Megohm } \\ & \pm 10 \%, \pm 20 \% \end{aligned}$ | 0.5 Watt <br> at $70^{\circ} \mathrm{C}$ |  |  |  |  |  |
| J(RV4) | 91 | Composition | 50 Ohms to 5 Megohms $\pm 10 \%, \pm 20 \%$ | $\begin{aligned} & \text { 2.25 Watts } \\ & \text { at } 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | 500 V | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +120^{\circ} \mathrm{C} \end{aligned}$ | 1,2 or 3 | $0.625(15,88)$ Deep by <br> $1.156(29,36)$ Diameter (Single Section) [ |  |
| EJ | 124 |  |  | $\begin{array}{\|c} \hline \text { 2.25 Watts } \\ \text { at } 70^{\circ} \mathrm{C} \\ \hline \end{array}$ |  |  | 1 or 2 |  |  |
| K | 100 |  |  | 3.0 Watts $\text { at } 70^{\circ} \mathrm{C}$ |  | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | 1,2 or 3 |  |  |
| G(RV6) | 83 |  | 100 Ohms to 5 Megohms $\pm 10 \%$, 士 $20 \%$ | 0.5 Watt | 350 V | $\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +120^{\circ} \mathrm{C} \end{gathered}$ | 1 | For G, L and W $0.469(11,91)$ Deep For GD: <br> $0.547(13,89)$ Deep For WR: <br> $0.422(10,72)$ Deep by $0.500(12,70)$ Diameter <br> Above dimensions for types G and WR do not include the available switch option 1 | Immersion Sealed |
| GD | 128 |  |  | at $70^{\circ} \mathrm{C}$ |  |  | 2 |  |  |
| L | 108 |  |  | $\begin{aligned} & 0.8 \text { Watt } \\ & \text { at } 70^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | 1 |  |  |
| W | 118 |  |  | $\begin{aligned} & 0.5 \text { Watt } \\ & \text { at } 70^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +120^{\circ} \mathrm{C} \end{aligned}$ |  |  |  |
| WR | 136 |  |  | 0.5 Watt <br> at $70^{\circ} \mathrm{C}$ |  |  |  |  | Dust and Splash Resistant |
| SP | 132 | Cermet | 50 Ohms to 1 Megohm $\pm 10 \%$ (5\% available) | 1.0 Watt at $70^{\circ} \mathrm{C}$ | 300 V | $\begin{aligned} & -65^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{gathered} 0.438(11,11) \\ \text { Deep by } \\ 0.375(9,52) \\ \text { Diameter } \\ \hline \end{gathered}$ | Immersion |
| M | 114 | Conductive Plastic | 100 Ohms to 1 Megohm $\pm 20 \%$ | $\begin{aligned} & \text { 0.1 Watt } \\ & \text { at } 40^{\circ} \mathrm{C} \end{aligned}$ | 90 V | $\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$ | 1 or 2 | 0.394 (10,0) <br> Cubed <br> All Versions | Dust and Splash Resistant |

All depth dimensions are maximum.

## panel potentiometers

TYPE J (RV4):
Standard of the industry for quality. Hot-molded composition, 50 ohm to 5 megs. $\pm 10 \%$ and $\pm 20 \%$ (special values to 1000 megs available). 2.25 W at $70^{\circ} \mathrm{C}$, single, dual, triple sections available. Switch for single or dual sections.

TYPE G (RV6):
Hot-molded composition, 100 ohms to 5 megs, $\pm 10 \%$ and $\pm 20 \%, 0.5 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$, single section available with or without SPST switch.

## TYPE W:

Hot-molded composition, 100 ohms to 5 megs, $\pm 10 \%$ and $\pm 20 \%, 0.5 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$, single section.

TYPE EJ:
Extra long life version of the Type J with rotational life exceeding one million rotations, single or dual configurations. Slip clutch available.
TYPE K:
A 3.0W at $70^{\circ} \mathrm{C}$ version of the popular Type J.



TYPE GD:
Dual section version of Type G.

TYPE L:
Hot-molded composition,
100 ohms to 5 megs, $\pm 10 \%$ and $\pm 20 \%, 0.8 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$, single section.


TYPE M:
Miniature conductive plastic, 100 ohms to $1 \mathrm{meg}, \pm 20 \%$ 0.1 W at $40^{\circ} \mathrm{C}$, single and dual sections available with or without switch. 5 terminal options. Non-metallic case, bushing and shaft.

TYPE SP:
Cermet 50 ohms to 1 meg , $\pm 10 \%, 1.0 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$, single section. Only $1 / 8$ inch diameter.


Standard options for most types include linear and non-linear tapers, a variety of shafts, bushings, shaft endings, shaft lengths, and hardware
Types GD, J and the multi-section MOD POT® with composition tracks are well suited for attenuator applications.


## SPECIFICATIONS

## General

Temperature range $--55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below. Other values available.

## OHMS

| 100 | 1 K | 10 K | 100 K | 1.0 Meg. |
| :--- | ---: | :--- | :--- | :--- |
| 200 | 2 K | 20 K | 200 K | 2.0 Meg. |
| 220 | 2.2 K | 22 K | 220 K | 2.2 Meg. |
| 250 | 2.5 K | 25 K | 250 K | 2.5 Meg. |
| 470 | 4.7 K | 47 K | 470 K | 4.7 Meg. |
| 500 | 5 K | 50 K | 500 K | 5.0 Meg. |

Total resistance tolerances $- \pm 20 \%$ or $\pm 10 \%$.
Tapers - Available in the following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| U | 100 Ohms to 5.0 Megohms |
| A, B, S, \& DB | 500 Ohms to 2.5 Megohms |

See chart on Page 85 for explanation of tapers.
Special tapers, where practical, can be supplied.
End resistance - See chart on Page 85.
Switches - Two types of single pole, single throw switches are available. One turns "ON" at start of clockwise shaft rotation, the other at the start of counterclockwise shaft rotation. The switch reduces effective electrical rotation to $248^{\circ}$ nominal.

## Type G <br> Hot-Molded Panel Potentiometers

## $1 / 2$ (0.50) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.5 Watt $\left(70^{\circ} \mathrm{C}\right)$ 100 Ohms to 5.0 Megohms FEATURES

- Linear and Non-Linear Tapers
- Immersion Sealed
- Style RV6
- Switches Available

Switch rating for resistive loads are 0.5 ampere 125 volt 60 Hertz and 1.5 amperes 28 volt DC.
Switches can be operated 5000 cycles at full rating.
Applicable military specification - Many of the variable resistors without switches may be ordered as Style RV6 of MIL-R-94.

## Electrical

Power -0.5 watt maximum at $+70^{\circ} \mathrm{C}$ for " U " linear taper provided voltage rating is not exceeded.
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ to zero at $+120^{\circ} \mathrm{C}$. Derate power 50 percent for non-metallic mounting and for resistors with " $A$ ", " $B$ ", " $S$ ", and "DB" tapers. For rheostat applications, derate power directly with shaft or actuator position.
Voltage - 350 volts maximum working voltage (RMS or DC), or as determined by $E_{\text {max }}=\sqrt{P R}$, whichever is less (at sea level).
Dielectric withstanding voltage - Maximum continuous voltage 350 volts (RMS or DC) at sea level. Will withstand a one second test of 750 volts (RMS) at sea level or 350 volts (RMS) at 3.4 inches $(86,36 \mathrm{~mm})$ mercury.
Insulation resistance - 1000 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.
Voltage characteristic -0.005 percent per volt or 0.5 ohm, whichever is greater.
(Electrical specifications continued on next page.)

## Electrical

Capacitance - The capacitance between terminal \#1 and \#3 with terminal \#2 "floating" is approximately 0.5 to 0.75 pF at 1 KHz .
The capacitance between terminal \#1 (grounded to bushing) and terminal \#3 (shaft in extreme clockwise position) approximately 3.0 to 3.7 pF at 1 KHz .
The capacitance between all terminals shorted together and the bushing is approximately 5.5 to 6.5 pF at 1 KHz .
In all cases capacitance indicated is for resistor only and does not include capacitance of measuring lead wires on test fixtures.

## Operational

Load life - 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$ ( 1.5 hour "ON", 0.5 hour "OFF").
Rotational life - 10 percent maximum change in total resistance as a result of a 50,000 cycle life test without load.

## Mechanical

Shafts - Diameter of shafts .125 inch ( $3,18 \mathrm{~mm}$ ). Minimum length .312 inch ( $7,94 \mathrm{~mm}$ ). Maximum length 2.500 inches ( $63,50 \mathrm{~mm}$ ) with plain, screwdriver slotted or flatted shaft endings. Preferred shaft lengths and endings are listed in the tables below.

PREFERRED SHAFT LENGTHS
Plain Round

| Inches | .500 | .625 |
| :---: | :---: | :---: |
| mm | 12,70 | 15,88 |

Screwdriver Slotted

| Inches | .375 | .438 | .500 | .625 | .750 | .875 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 9,52 | 11,11 | 12,70 | 15,88 | 19,05 | 22,22 |

Other lengths available in $1 / 64$ inch $(0,40 \mathrm{~mm})$ increments. All shaft lengths are measured from the mounting face of the resistor to the free end of the shaft.
Bushings - All bushings have a 32-NEF-2A thread and are .250 inch ( $6,35 \mathrm{~mm}$ ) in diameter. Bushing lengths and types are shown in the table below.

| Plain |  | Locking |  | Panel Watertight Plain |  | Panel Watertight Locking |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inch | mm | Inch | mm | Inch | mm | Inch | mm |
| . 250 | 6,35 | . 375 | 9,52 | . 250 | 6,35 | . 375 | 9,52 |
| . 375 | 9,52 | . 500 | 12,70 | . 375 | 9,52 | . 500 | 12,70 |
| . 500 | 12,70 | . 625 | 15,88 | . 500 | 12,70 |  |  |

After lock nuts on locking bushing are tightened with a torque of 8 inch-pounds ( $9,22 \mathrm{kgf}-\mathrm{cm}$ ) shafts will not turn with torques up to 20 inch-ounces ( $1,44 \mathrm{kgf}-\mathrm{cm}$ ).

Hardware - Resistors are normally supplied with mounting nut, M-4721, and one internal tooth lock washer, M-4748. Resistors with shaft lock bushings are supplied with one lock nut, M-4761, in addition to the above. Unless otherwise specified, all hardware shipped in bulk.
Mounting bracket B-28868 and printed wiring board F-19942 can also be supplied (separately or mounted on unit) to adapt bushing type resistors for horizontal mounting on printed wiring board. See dimensions on Page 88.
Locating lugs - Four locating lugs can be provided so resistors may be indexed with respect to the surface on which they are mounted. See dimensions.
Turning torque -0.5 to 3 inch-ounces ( 0,036 to $0,22 \mathrm{kgf}-\mathrm{cm}$ ) at $+25^{\circ} \mathrm{C}$ and 13 inch-ounces ( 0,94 $\mathrm{kg}-\mathrm{cm}$ ) maximum at $-55^{\circ} \mathrm{C}$.
Maximum additional torque required to actuate the switch is 5 inch-ounces ( $0,36 \mathrm{kgf}-\mathrm{cm}$ ).
Stop torque -4 inch-pounds ( $4,61 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Rotation - Mechanical rotation for resistors with or without switch is $295^{\circ} \pm 5^{\circ}$.
Electrical rotation is $270^{\circ}$ nominal without switch and $248^{\circ}$ nominal with switch.
Backlash - $3^{\circ}$ maximum.
Construction - Materials are corrosion resistant and essentially non-magnetic; terminals are treated for easy soldering.
The resistor incorporates an internal " $O$ " ring between the shaft and bushing. External surfaces are given special treatment so that the entire resistor is immersion sealed.
A panel "watertight" bushing is available. This bushing is provided with an external "O" ring in addition to the internal "O" ring supplied as standard.
Immersion - No continuous stream of bubbles (4 or more) emanating from the resistor as a result of the immersion test ( 1 minute in water at $+85^{\circ} \mathrm{C}$ ).
Weight - The exact weight of individual resistors depends on the precise mechanical specifications involved. Table below lists approximate net weights of typical Type GA resistors including hardware normally specified.

| Bushing | Shaft | Weight |  |
| :---: | :---: | :---: | :---: |
|  |  | Ounces | Grams |
| $\begin{array}{c}.250 \mathrm{in} . \\ (6,35 \mathrm{~mm}) \text { Plain } \\ (9,52 \mathrm{~mm}) \text { Lock }\end{array}$ | $\begin{array}{c}.750 \mathrm{in} . \\ (19,05 \mathrm{~mm})\end{array}$ | 0.24 | 6.8 |
| $(11,11 \mathrm{~mm})$ |  |  |  |$\left.) 0.24\right) 6.8$

Marking - Allen-Bradley part number and nominal total resistance marked in two lines. Other marking possible, limited to maximum of 16 characters in each of two lines for resistors without switch and 9 characters in each of two lines for resistors with switch. A-B monogram plus "Type $G$ " always included.

## Environmental

Vibration - 2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 204, condition "C" of MIL-STD-202.)
Shock -2 percent maximum change in total resistance. 5 percent maximum change in resistance setting. (Tested per method 213, condition " I " of MIL-STD-202.)
Moisture resistance -10 percent maximum change in total resistance. (Method 106 of MIL-STD202.)

Corrosion resistance - Materials show no corrosion after a 200 hour salt spray test. (Method 101 of MIL-STD-202.)
Effect of soldering - 2 percent maximum change in total resistance as a result of immersing the terminals in $+350^{\circ} \mathrm{C}$ solder to within 0.62 inch ( 1,57 mm ) of the resistor body for 5 seconds.
Temperature cycling -3 percent maximum change in total resistance as a result of the temperature cycling test (five cycles $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ ).

Low temperature operation -2 percent maximum change in total resistance as a result of the low temperature operation test ( $-55^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load.).
Low temperature storage -2 percent maximum change in total resistance as a result of the storage test ( 24 hours at $-63^{\circ} \mathrm{C}$ ).
Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See table below.

| Nominal Resistance | Degrees Celsius - "U" Linear Taper |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $55^{\circ}$ | -25 | $0^{\circ}$ | $+25^{\circ}$ | $+55^{\circ}$ | $+85^{\circ}$ | +120 |
| 100 Ohm | + 4.5 | +2.5 | +1.5 |  | 1.0 | . 5 |  |
| 1,000 Ohm | + 5.5 | + 3.0 | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | + 4.5 |
| 10,000 Ohm | $+7.0$ | $+3.5$ | +2.0 | 0 | $\pm 1.0$ | $\pm 2.5$ | + 5.5 |
| ,000 Ohm | +8.0 | $+4.0$ | +2.0 | 0 | $\pm 1.5$ | $\pm 3.0$ | + 6 |
| 1 Megohm |  | $+5.0$ | +25 | 0 | $\pm 1.5$ | $\pm 3.5$ |  |

For " S ", " A ", " B " and "DB" tapers multiply percentage figures shown above by 1.25

## Taper data



## Ordering information

1. Type (GA, GB, GH, GP or GS).
2. Taper.
3. Total resistance.
4. Total resistance tolerance.
5. Bushing type.
6. Bushing length.
7. Shaft ending.

END RESISTANCE

| TAPER | MINIMUM RESISTANCE BETWEEN TERMINALS 1 and 2 | MINIMUM RESISTANCE BETWEEN TERMINALS 2 and 3 |
| :---: | :---: | :---: |
| U \& S | 13 | [1] |
| A | 11 | 12 |
| B | 12 | 11 |
| DB | 3 | 2 |
|  |  |  |

- "Less than $.004 \%$ of total resistance," or "less than 15 ohms" whichever is greater.
2 "Less than $1 \%$ of total resistance," or "less than 15 ohms" whichever is greater.
3 Less than 15 ohms.


## DIMENSIONS

Resistor with lug terminals
Plain Bushing


Locking Bushing


Standard Bushing Lengths
.375 (9.52) -. $500(12,70)-.625(15,88)$
Maximum Mounting Panel Thickness when used with standard mounting hardware $.062(1,57)-.188(4,76)-.312(7,94)$

Resistor with pin terminals


Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters.
TOLERANCES
Dimensional tolerance $\pm .016(0,40)$
Angular
tolerance $\pm 5^{\circ}$
Except as specified.
NOT TO SCALE

Resistor
Connections


Panel watertight bushing
Plain


## Shaft endings

Screwdriver
Slotted


Shaft in Extreme
Counterclockwise Position
Screwdriver Slot in line with
Movable Contact
Flatted


## Lug options

Plain and Locking Bushing

86


Resistor with switch


Switches


Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters.
TOLERANCES
Dimensional tolerance $\pm .016(0,40)$
Angular
Resistor
Connections
tolerance $\pm 5^{\circ}$
Except as specified.
NOT TO SCALE

## Panel watertight bushing



Shaft Lengths
from . $312(7.94)$ to $2.375(60,32)$
Max, Chamfer . 016 ( 0,40 ) $\times 45^{\circ}$


## Shaft endings



Shaft in Extreme
Counterclockwise Position
Screwdriver Slot in line with Movable Contact
Flatted


## Lug options

Plain Bushing


Panel Watertight Bushing


## DIMENSIONS

## Resistor for printed circuit board mounting

Plain Bushing


Basic dimensions in inches.

Dimensions shown in parentheses are in millimeters.

TOLERANCES
Dimensional tolerance
$\pm .016(0,40)$
Angular
tolerance $\pm 5^{\circ}$
Except as specified.
NOT TO SCALE

## Shaft endings



Counterclock wise Position
Screwdriver Slot in line with
Movable Contact


Resistor
Connections

Flatted


## Hardware




## Hot-Molded Panel Potentiometers



1-5/32 (1.156) Inch (29,36 mm) Diameter 2.25 Watts ( $70^{\circ} \mathrm{C}$ ) 50 Ohms to 5.0 Megohms FEATURES

- $\pm 20 \%$ or $\pm 10 \%$ Tolerance
- Linear and Non-Linear Tapers
- Hot-Molded Composition
- Single, Dual and Triple Sections
- Switches UL Approved
- Style RV4 and 2RV7


## SPECIFICATIONS

## General

Temperature range $--55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below. Other values available.

OHMS

| 50 | 750 | 7.5 K | 75 K | 750 K |
| ---: | ---: | :---: | :---: | :---: |
| 100 | 1 K | 10 K | 100 K | 1 Meg. |
| 200 | 2 K | 20 K | 200 K | 2 Meg. |
| 250 | 2.5 K | 25 K | 250 K | 2.5 Meg. |
| 500 | 5 K | 50 K | 500 K | 5 Meg. |

Total resistance tolerances $- \pm 20 \%$ or $\pm 10 \%$.
Tapers - Available in the following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| $U$ | 50 Ohms to 5.0 Megohms |
| A. B. S \& DB | 250 Ohms to 5.0 Megohms |

See chart on Page 93 for explanation of tapers. Special tapers, where practical, can be supplied.
End resistance - See chart on Page 93.
Switches - Single pole, Single throw snap switch that "turns on at start of clockwise rotation". Underwriter rating 2 amperes 125 volts RMS 60 Hertz. Underwriter Laboratories approval file number E-10392. Also rated 10 amperes 10 volts direct current noninductive. Meets 3 ampere 117 volts MIL-R-94 specification. Switches can be operated 5000 cycles at full rating.

Attenuators - See Allen-Bradley Publication EC5910-2.1 for L, Bridged-T, Straight-T and BridgedH pads.
Applicable military specification - Many of the single variable resistors listed herein may be ordered as Style RV4 of MIL-R-94; and many of the duals may be ordered as Style 2RV7 of MIL-R-94.

## Electrical

Power -2.25 watts maximum at $+70^{\circ} \mathrm{C}$ (single resistors only) provided voltage rating is not exceeded.
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ to zero at $+120^{\circ} \mathrm{C}$. Derate 50 percent for non-metallic mounting and for resistors with " $A$ ", " $B$ ", " S ", and "DB" tapers. For rheostat applications see Page 94.
For derating of Dual and Triple resistors refer to Page 94.
Voltage -500 volts maximum working voltage (RMS or $D C$ ), or as determined by $E_{\text {max. }}=\sqrt{\text { PR, }}$ whichever is less (at sea level).
Dielectric withstanding voltage - Maximum continuous voltage 500 volts RMS at sea level, 300 volts RMS at 3.4 inches ( $86,36 \mathrm{~mm}$ ) mercury. Will withstand a one second test of 1000 volts RMS at sea level or 500 volts RMS at 3.4 inches ( $86,36 \mathrm{~mm}$ ) mercury. (Electrical specifications continued on Page 92.)

## Electrical

Taps - Single electrical taps are available at 35 percent, 50 percent or 65 percent of rotation. Resistance tolerance $\pm 20$ percent. Unless otherwise specified low series tap resistance is provided. See dimensions on Page 97 for tap terminal locations. Consult factory for other available taps.
Capacitance - See Page 94 for explanation.

## Operational

Load life - 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$ ( 1.5 hour "ON", 0.5 hour "OFF").
Rotational life -10 percent maximum change in total resistance as a result of a 100,000 cycle life test without load (single section resistors only).

## Mechanical

Shafts - Diameter of shafts .250 inch ( $6,35 \mathrm{~mm}$ ). Minimum length .250 inch ( $6,35 \mathrm{~mm}$ ). Maximum length 6.000 inches ( $152,40 \mathrm{~mm}$ ). Preferred shaft lengths and endings are shown in the table below.

PREFERRED SHAFT LENGTHS
Plain Round

| Plain Round |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inches | 500 | .625 | 750 | 875 | 2.000 |
| mm | 12,70 | 15,88 | 19,05 | 22,23 | 50,80 |
| Screwdriver Slotted |  |  |  |  |  |
| Inches | .500 | 625 | 750 | .875 |  |
| mm | 12,70 | 15,88 | 19,05 | 22,23 |  |

Other lengths available in $1 / 64$ inch ( $0,40 \mathrm{~mm}$ ) increments. All shaft lengths are measured from the mounting face of the resistor to the free end of the shaft. Special shaft endings can be supplied.
Bushings - All bushings have a 32 -NEF-2A thread and are .375 inch $(9,52 \mathrm{~mm})$ in diameter. Bushing lengths and types are shown in the table below.

| Plain |  | Standard Locking |  | Special <br> Locking |  | Shaft Watertight |  | Panel and Shaft Watertight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inch | mm |
| . 125 | 3,18 | . 500 | 12,70 | 375 | 9.52 | 250 | 6,35 | 281 | 7,14 |
| 250 | 6,35 |  |  | . 500 | 12,70 | . 375 | 9,52 | . 406 | 10,32 |
| . 375 | 9,52 |  |  |  |  | . 500 | 12.70 |  |  |
| . 500 | 12,70 |  |  |  |  |  |  |  |  |

All bushing lengths are measured from the mounting face of the resistor and include the bushing washer.
Standard locking bushings will prevent shaft rotation with torques up to 40 inch-ounces ( $2,88 \mathrm{kgf}-\mathrm{cm}$ ) after lock nuts have been tightened with a torque of 10 inchpounds ( $11,52 \mathrm{kgf}-\mathrm{cm}$ ).

Hardware - Resistors are normally supplied with one mounting nut, M-2786, and one internal tooth lock washer, M-2898. Resistors with standard locking bushings are normally supplied with one lock nut, B-13750, in addition to the above. Standard locking bushings with MAXIMUM shaft extension of .125 inch $(3,18 \mathrm{~mm})$ beyond the bushing can be supplied with acom lock nut, M-3236, instead of lock nut, B-13750. Unless otherwise specified, all hardware shipped in bulk. For hardware dimensions see Page 97.
Locating lugs - Two locating lugs are provided so resistors may be indexed with respect to the surface on which they are mounted. Lug option 1 standard. See dimensions on Page 97.
Turning torque $-\mathrm{At}+25^{\circ} \mathrm{C}$ minimum torque 1 inch-ounce ( $0,07 \mathrm{kgf}-\mathrm{cm}$ ). Maximum torque as follows:

Single -6 inch-ounces ( $0,43 \mathrm{kgf}-\mathrm{cm}$ )
Dual - 12 inch-ounces ( $0,86 \mathrm{kgf}-\mathrm{cm}$ )
Dual concentric types have a maximum torque of 6 inch-ounces $(0,43 \mathrm{kgf}-\mathrm{cm})$ on each shaft. Triple concentric types have a maximum torque of 6 inchounces ( $0,43 \mathrm{kgf} . \mathrm{cm}$ ) on the outer shaft and 12 inchounces ( $0,86 \mathrm{kgf} \cdot \mathrm{cm}$ ) on the inner shaft. Immersion sealed types require an additional torque of 6 inchounces ( $0,43 \mathrm{kgf}-\mathrm{cm}$ ).
Stop torque -12 inch-pounds ( $13,82 \mathrm{kgf} \mathrm{cm}$ ) minimum.
Rotation - Mechanical rotation without switch is $312^{\circ}$ $\pm 3^{\circ}$, with switch $333^{\circ} \pm 3^{\circ}$. Electrical rotation is $292^{\circ}$ nominal.
Backlash - Maximum backlash: single resistors $\pm 1-1 / 2^{\circ}$, dual resistors $\pm 3^{\circ}$, triple resistors $\pm 6^{\circ}$.
Construction - Materials are corrosion resistant and essentially non-magnetic; terminals are treated for easy soldering.
Immersion sealed types, commonly referred to as "watertight", are optional. These immersion sealed types incoporate an internal " O " ring between the shaft and bushing. External surfaces are given special treatment so that the entire resistor is immersion sealed. This feature is not available when concentric shafts or switches are required.
A panel-shaft "watertight" bushing is also optional. This option is provided with an external " O " ring plus the features of the immersion sealed type. This feature is not available when concentric shafts are required. When furnished with a switch the assembly is not immersion sealed.
Immersion (Immersion sealed types only) - No continuous stream of bubbles (4 or more) emanating from the resistor as a result of the immersion test (1 minute in water at $+85^{\circ} \mathrm{C}$ ).
Marking - Allen-Bradley part number and nominal total resistance marked in two lines. Other marking possible, limited to maximum of 13 characters in each of two lines. A•B monogram plus "Type J" always included.

Vibration - 2 percent maximum total resistance change and 5 percent maximum resistance setting change. (Single and dual resistors tested per method 204, condition "C" of MIL-STD-202. Triple resistors tested per method 204, condition " A " of MIL-STD202.)

Shock -2 percent maximum total resistance change and 5 percent maximum resistance setting change. (Single and dual resistors tested per method 213, condition " I " of MIL-STD-202. Triple resistors tested per method 213, condition " $G$ " of MIL-STD-202.)
Moisture resistance - 10 percent maximum total resistance change. (Tested per method 106 of MIL-STD-202. Resistors with solid shafts only.)
Corrosion resistance - Materials show no corrosion after a 200 hour salt spray test. (Method 101 of MIL-STD-202.)
Effect of soldering -2 percent maximum change in total resistance as a result of immersing the terminals in $350^{\circ} \mathrm{C}$ solder to within 0.125 inch $(3,18 \mathrm{~mm})$ of the resistor body for 5 seconds.
Temperature cycling -3 percent maximum change in total resistance as a result of the temperature cycling test (five cycles $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ ).

Low temperature operation - 3 percent maximum change in total resistance as a result of the low temperature operation test ( $-55^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load).
Low temperature storage -2 percent maximum change in total resistance as a result of the storage test ( 24 hours at $-63^{\circ} \mathrm{C}$ ).
Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See table below.

|  | Degrees Celsius - "U" Linear Taper |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal <br> Resistance | $-55^{\circ}$ | $-25^{\circ}$ | $0^{\circ}$ | $+25^{\circ}$ | $+55^{\circ}$ | $+85^{\circ}$ | $+120^{\circ}$ |
| $\mathbf{1 0 0}$ Ohms | +4.5 | +2.5 | +1.5 | 0 | $\pm 1.0$ | $\pm 1.5$ | +3.5 |
| $\mathbf{1 , 0 0 0}$ Ohms | +5.5 | +3.0 | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | +4.5 |
| $\mathbf{1 0 , 0 0 0}$ Ohms | +7.0 | +3.5 | +2.0 | 0 | $\pm 1.0$ | $\pm 2.5$ | +5.5 |
| $\mathbf{1 0 0 , 0 0 0}$ Ohms | +8.0 | +4.0 | +2.0 | 0 | $\pm 1.5$ | $\pm 3.0$ | +6.0 |
| $\mathbf{1}$ Megohm | +10.0 | +5.0 | +2.5 | 0 | $\pm 1.5$ | $\pm 3.5$ | +7.5 |

For " S ", " A ", " B " and " DB " tapers multiply percentage figures shown above by 1.25 .

## Taper data



## Ordering information

1. Type (Single, dual or triple).
2. Taper (each element on multi-section controls).
3. Total resistance value (each element on multisection controls) in ohms.
4. Tolerance (each element on multi-section controls) percent.
5. Bushing type (plain, locking, shaft watertight, or panel and shaft watertight).
6. Bushing length in inches.

END RESISTANCE

| TAPER | MINIMUM <br> RESISTANCE <br> BETWEEN <br> TERMINALS <br> 1 and 2 | MINIMUM <br> RESISTANCE <br> BETWEEN <br> TERMINALS <br> 2 and 3 |
| :---: | :---: | :---: |
| U\&S | $\mathbf{n}$ | $\mathbf{n}$ |
| A | il | $\mathbf{2}$ |
| B | $\mathbf{2}$ | $\mathbf{n}$ |
| DB | $\mathbf{3}$ | $\mathbf{2}$ |

II "Less than $.004 \%$ of total resistance," or "less than 4 ohms" whichever is greater.
(2 "Less than $1 \%$ of total resistance," or "less than 4 ohms" whichever is greater.
[3 Less than 4 ohms.

Type

## Additional ratings

Multiple resistor power derating - The permissible power dissipation in one resistor element is a function of the power dissipation in the other elements.
Maximum continuous power rating in watts with entire resistor elements in the circuit are as follows:
$\left(\frac{\mathrm{W} 1}{2.25}\right)^{2}+\left(\frac{\mathrm{W} 2}{1.8}\right)^{2}+\left(\frac{\mathrm{W} 3}{1.8}\right)^{2}=1$ (Maximum)
Where $W_{1}=$ Watts in entire first or panel resistor element.
$W_{2}=W$ atts in entire second or middle resistor element.
$W_{3}=$ Watts in entire third or rear resistor element.
Derating with respect to rotation - rheostat application

| Percent <br> Rotation | Multiply <br> Wattage <br> Rating By | Percent <br> Rotation | Multiply <br> Wattage <br> Rating By |
| :---: | :---: | :---: | :---: |
| 100 | 1.00 | 40 | 0.81 |
| 90 | 0.99 | 30 | 0.68 |
| 80 | 0.98 | 20 | 0.49 |
| 70 | 0.96 | 10 | 0.23 |
| 60 | 0.93 | 0 | 0.11 |
| 50 | 0.89 |  |  |

## DIMENSIONS

Single section resistors

Capacitance - The capacitance between terminals \#1 and \#3 with terminal \#2 "floating" is approximately 2 to 3 pF at 1 KHz .
The capacitance between terminal \#1 (grounded to bushing) and terminal \#3 (shaft in extreme clockwise position) is approximately 10 to 12 pF at 1 KHz .
The capacitance between all terminals shorted together and the bushing is approximately 15 to 20 pF at 1 KHz . In all cases capacitance indicated is for resistor only and does not include capacitance of measuring lead wires on test fixtures.

| First or Panel <br> Resistor Element <br> W1 | Second or Middle <br> Resistor Element <br> W2 | Third or Rear <br> Resistor Element <br> W3 |  |
| :---: | :---: | :---: | :---: |
|  | 2.25 Watts | 0 Watt | - |
| DUAL | 2.00 Watts | 0.83 Watt | - |
| SECTION | 1.75 Watts | 1.13 Watts | - |
|  | 1.50 Watts | 1.34 Watts | - |
|  | 1.25 Watts | 1.49 Watts | - |
|  | 1.00 Watts | 1.61 Watts | - |
|  | 0.75 Watts | 1.70 Watts | - |
|  | 0.50 Watts | 1.76 Watts | - |
|  | 0.25 Watts | 1.79 Watts | - |
|  | 0 | Watt | 1.80 Watts |
| TRIPLE | 2.0 Watts | 0.5 Watt | - |
|  | 1.5 Watts | 1.0 Watt | 0.65 Watt |
|  | 1.5 Watts | 0.5 Watt | 1.89 Watt |
|  | 1.0 Watt | 1.5 Watts | 0.59 Wats |
|  | 1.0 Watt | 1.0 Watt | 1.27 Watts |
|  | 1.0 Watt | 0.5 Watt | 1.53 Watts |
|  | 0.5 Watt | 1.5 Watts | 0.90 Watt |
|  | 0.5 Watt | 1.0 Watt | 1.44 Watts |
|  | 0.5 Watt | 0.5 Watt | 1.68 Watts |

See Page 96 for additional dimensions common to all units.


With or Without Switch Plain Shaft Ending
With Plain Bushing or Shaft Watertight Bushing


With or Without Switch Plain Shaft Ending
With Standard, Locking Bushing


With or Without Switch Plain Shaft Ending
With Special Locking Bushing (For Use With Jam Nut M-3638)


With or Without Switch Plain Shaft Ending
With Panel Shaft Watertight Bushing

## Dual section resistors

Plain or Shaft Watertight Bushing


Standard Locking Bushing


Four randomly located slots on all locking bushings.

Special Locking Bushing
(For Use With Jam Nut M.3638)


Four randomly located slots on all locking bushings.



## Triple section resistors

See Page 96 for additional dimensions common to all units.

Plain or Shaft Watertight Bushing


Standard Locking Bushing



## DIMENSIONS COMMON TO ALL UNITS

## Mounting holes

Basic dimensions in inches. Dimensions shown in PARENTHESES are in millimeters.


Mounting dimension for resistors with plain bushings, shaft watertight bushings. and locking bushings.

## Standard slotted shaft ending

TOLERANCE
TOnsional Tolerance $\pm .016$

$(0.40)$
ept as Specified.
NOT TO SCALE

Except as Specified.
NOT TO SCALE


$$
\begin{aligned}
& \text { All } 250(6,35) \text { diameter shafts supplied with maximum } \\
& \text { chamfer } .031(0.80) \times 45^{\circ} \text { at the shaft end. } \\
& \text { All } 125(3.18) \text { diameter shafts supplied with maximum } \\
& \text { chamfer } .016(0,40) \times 45^{\circ} \text { at the shaft end. }
\end{aligned}
$$

Mounting dimension for resistor with panel shaft watertight bushings.


## Standard flatted shaft ending



Dimensions for resistors with concentric shafts.


Dimensions for resistors with solid shafts.
All $250(6,35)$ diameter shafts supplied with maximum chamfer $031(0,80) \times 45^{\circ}$ at the shaft end
All 125 (3.18) diameter shafts supplied with maximum chamfer $016(0.40) \times 45^{\circ}$ at the shaft end.

Terminal connections to resistance element


## Locating lug options



## Mounting hardware

When Specified, Any of the Hardware Illustrated can be supplied (See Page 92)


Mounting Washer M-3462


Lock Washer M-2898


Mounting Nut M-2786


Mounting Washer M-3461


Lock Washer M. 3252


Mounting Nut M-1766


Lock Nut B-13750


Jam Lock Nut M-3638


Pal Nut M-2907


Lock Nut M-3318


Acom Lock Nut M-3236

# Hot-Molded Panel Potentiometers 

## EXPLANATION OF PART NUMBERS




Vernier Adjustment
1-5/32 (1.156) Inch (29,36 mm) Diameter 2.25 Watts $\left(70^{\circ} \mathrm{C}\right)$ 50 Ohms to 5 Megohms FEATURES

- $\pm 20 \%$ or $\pm 10 \%$ Tolerance
- Hot-Molded Composition
- Single-Knob, Single-Turn


## SPECIFICATIONS

## General

Both coarse and fine rheostat or potentiometer adjustments are now possible in a single-knob single-turn control due to the special coupling between front and rear sections of this Type J variable resistor. It's lower in price than concentric construction and needs the panel space of only one control.

R 2 (rear section) is usually the higher value, generally by a factor of about 10 times R1 (greater than 20:1 ratio is not recommended). Built-in backlash will permit R2 to "idle" while a "backing off" adjustment is made in R1. Mechanical independence of R1 covers about $40^{\circ}$.

## Typical circuitry

As a rheostat


As a potentiometer


Four-Terminal Circuit
This lifts Terminal C above Terminal B by an amount equal to the voltage in the lower portion of the R1 section.


Three-Terminal Parallel Circuit
In this case, the R2 section is the lower resistance, the R1 is higher. A ratio of $5: 1$ is probably a good one here due to the loading effect of R2 on R1 adjustments.


Three-Terminal Modified Circuit
This maintains continuity between $B$ and $C$ but results in a changeable overall resistance between Terminal $A$ and $B$.

For additional specifications, please refer to Technical Publication EC5607-2.1.


SPECIFICATIONS

## General

Temperature range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below. Other values available.

OHMS

| 50 | 1 K | 10 K | 100 K | 1 Meg. |
| ---: | ---: | ---: | ---: | ---: |
| 100 | 2.5 K | 25 K | 250 K | 2.5 Meg. |
| 250 | 5 K | 50 K | 500 K | 5 Meg. |
| 500 |  |  |  |  |

Total resistance tolerances $- \pm 20 \%$ or $\pm 10 \%$.
Tapers - Available in the following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| U | 50 Ohms to 5.0 Megohms |
| A, B, S \& DB | 250 Ohms to 5.0 Megohms |

See chart on following pages for explanation of tapers. Special tapers, where practical, can be supplied.
End resistance - See chart on following pages.

## Electrical

Power -3 watts maximum at $+70^{\circ} \mathrm{C}$ for " U " linear taper only, (single resistors only) provided voltage rating is not exceeded.
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ to zero at $+150^{\circ} \mathrm{C}$. Derate 50 percent for

## Hot-Molded Panel

 Potentiometers1-5/32 (1.156) Inch (29,36 mm) Diameter 3.0 Watts ( $70^{\circ} \mathrm{C}$ )<br>\section*{50 Ohms to 5.0 Megohms}<br>\section*{FEATURES}<br>- Single, Dual and Triple Sections<br>- Linear and Non-Linear Tapers<br>- $\pm 20 \%$ or $\pm 10 \%$ Tolerance

non-metallic mounting and for resistors with " A ", " B ", " S ", and "DB" tapers. For rheostat applications derate directly with shaft or actuator position.
For derating of Dual and Triple resistors refer to following pages.

Voltage -500 volts maximum working voltage (RMS or $D C$ ), or as determined by $E_{\max }=\sqrt{P R}$, whichever is less (at sea level).

Dielectric withstanding voltage - Maximum continuous voltage 500 volts RMS at sea level. Will withstand a one second test of 1000 volts (RMS or DC) at sea level or 500 volts RMS at 3.4 inches $(86,36 \mathrm{~mm})$ mercury .
Capacitance - The capacitance between terminals \#1 and \#3 with terminal \#2 "floating" is approximately 2 to 3 pF at 1 KHz .
The capacitance between terminal \#1 (grounded to bushing) and terminal \#3 (shaft in extreme clockwise position) is approximately 10 to 12 pF at 1 KHz .
The capacitance between all terminals shorted together and the bushing is approximately 15 to 20 pF at 1 KHz .
In all cases capacitance indicated is for resistor only and does not include capacitance of measuring lead wires on test fixtures.

## Operational

Load life -10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}(1.5$ hour "ON", 0.5 hour "OFF").
Rotational life -10 percent maximum change in total resistance as a result of a 100,000 cycle life test without load (single section resistors only).

## Mechanical

Shafts - Diameter of shafts 250 inch ( $6,35 \mathrm{~mm}$ ). Minimum length .250 inch ( $6,35 \mathrm{~mm}$ ). Maximum length 6.000 inches $(152,40 \mathrm{~mm})$. Preferred shaft lengths and endings are shown in the table below.

## PREFERRED SHAFT LENGTHS

Plain Round

| Inches | 500 | .625 | .750 | 875 | 2.000 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 12.70 | 15,88 | 19,05 | 22,23 | 50,80 |
| Screwdriver Slotted |  |  |  |  |  |
| Inches | .500 | 625 | .750 | 875 |  |
| mm | 12.70 | 15,88 | 19.05 | 22.23 |  |

Other lengths available in $1 / 64$ inch ( $0,40 \mathrm{~mm}$ ) increments. All shaft lengths are measured from the mounting face of the resistor to the free end of the shaft. Concentric shafts available, see DIMENSIONS.
Bushings - All bushings have a 32 -NEF-2A thread and are .375 inch $(9,52 \mathrm{~mm})$ in diameter. Bushing lengths and types are shown in the table below.

| Plain |  | Standard Locking |  | Special <br> Locking |  | Shaft Watertight |  | Panel and Shaft Watertight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inch | mm |
| . 125 | 3,18 | 500 | 12,70 | 375 | 9.52 | 250 | 6,35 | 281 | 7.14 |
| 250 | 6,35 |  |  | . 500 | 12.70 | . 375 | 9.52 | 406 | 10.32 |
| . 375 | 9.52 |  |  |  |  | . 500 | 12.70 |  |  |
| . 500 | 12.70 |  |  |  |  |  |  |  |  |

All bushing lengths are measured from the mounting face of the resistor and include the bushing washer.
Standard locking bushings will prevent shaft rotation with torques up to 40 inch-ounces $(2,88 \mathrm{kgf}-\mathrm{cm})$ after lock nuts have been tightened with a torque of 10 inch. pounds ( $11,52 \mathrm{kgf}-\mathrm{cm}$ ).
Hardware - Resistors are normally supplied with one mounting nut, M-2786, and one intemal tooth lock washer, M-2898. Resistors with standard locking bushings are normally supplied with one lock nut, B-13750, in addition to the above. Standard locking
bushings with MAXIMUM shaft extension of 125 inch ( $3,18 \mathrm{~mm}$ ) beyond the bushing can be supplied with acom lock nut, M-3236, instead of lock nut, B-13750. Unless otherwise specified, all hardware shipped in bulk. For hardware dimensions see Page 106.
Locating lugs - Two locating lugs are provided so resistors may be indexed with respect to the surface on which they are mounted. Four lug options available. Lug option 1 standard. See DIMENSIONS.
Turning torque $-\mathrm{At}+25^{\circ} \mathrm{C}$ minimum torque 1 inch-ounce $(0,07 \mathrm{~kg}-\mathrm{cm})$. Maximum torque as follows:

Single -6 inch-ounces ( $0,43 \mathrm{kgf} \cdot \mathrm{cm}$ )
Dual - 9 inch-ounces ( $0,65 \mathrm{kgf}-\mathrm{cm}$ )
Triple - 12 inch-ounces ( $0,86 \mathrm{kgf} \cdot \mathrm{cm}$ )
Dual concentric types have a maximum torque of 6 inch-ounces ( $0,43 \mathrm{kgf} \cdot \mathrm{cm}$ ) on each shaft. Triple concentric types have a maximum torque of 6 inchounces ( $0,43 \mathrm{kgf}-\mathrm{cm}$ ) on the outer shaft and 9 inchounces ( $0,65 \mathrm{~kg}-\mathrm{cm}$ ) on the inner shaft. Immersion sealed types require an additional torque of 6 inchounces ( $0,43 \mathrm{kgf}-\mathrm{cm}$ ).
Stop torque - 12 inch pounds ( $13,82 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Rotation - Mechanical rotation is $312^{\circ} \pm 3^{\circ}$. Electrical rotation is $292^{\circ}$ nominal.
Backlash - Maximum backlash; single resistors $=1-1 / 2^{\circ}$, dual resistors $\pm 3^{\circ}$, triple resistors $\pm 6^{\circ}$.
Construction - Materials are corrosion resistant and essentially non-magnetic; enclosure is dust and splash resistant; terminals are treated for easy soldering.
Immersion sealed types, commonly referred to as "watertight", are optional. These immersion sealed types incorporate an internal " O " ring between the shaft and bushing. External surfaces are given special treatment so that the entire resistor is immersion sealed. This feature is not available when concentric shafts are required.
A panel-shaft "watertight" bushing is also optional. This option is provided with an external "O" ring plus the features of the immersion sealed type. This feature is not available when concentric shafts are required.
Immersion (Immersion sealed types only) - No continuous stream of bubbles ( 4 or more) emanating from the resistor as a result of the immersion test (1 minute in water at $+85^{\circ} \mathrm{C}$ ).
Marking - Allen-Bradley part number and nominal total resistance marked in two lines. Other marking possible, limited to maximum of 13 characters in each of two lines. A-B monogram plus "Type $K$ " always included.

## bek

Vibration - 2 percent maximum total resistance change and 5 percent maximum resistance setting change. (Single and dual resistors tested per method 204, condition "C" of MIL-STD-202. Triple resistors tested per method 204, condition "A" of MIL-STD202.)

Shock -2 percent maximum total resistance change and 5 percent maximum resistance setting change. (Single and dual resistors tested per method 213, condition " I " of MIL-STD-202. Triple resistors tested per method 213, condition " $G$ " of MIL-STD-202.)
Moisture resistance - 10 percent maximum total resistance change. (Tested per method 106 of MIL-STD-202. Resistors with solid shafts only.)
Corrosion resistance - Materials show no corrosion after a 200 hour salt spray test. (Method 101 of MIL-STD-202.)
Effect of soldering - 2 percent maximum change in total resistance as a result of immersing the terminals in $+350^{\circ} \mathrm{C}$ solder to within 0.125 inch $(3,18 \mathrm{~mm})$ of the resistor body for 5 seconds.
Temperature cycling -3 percent maximum change in total resistance as a result of the temperature cycling test (five cycles $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ).

Low temperature operation - 3 percent maximum change in total resistance as a result of the low temperature operation test ( $-55^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load).
Low temperature storage -2 percent maximum change in total resistance as a result of the storage test ( 24 hours at $-63^{\circ} \mathrm{C}$ ).
Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See table below.

|  | Degrees Celsius - "U" Linear Taper |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resistance | $-55^{\circ}$ | $-25^{\circ}$ | $0{ }^{\circ}$ | $+25^{\circ}$ | $+55^{\circ}$ | $+85^{\circ}$ | $+120^{\circ}$ | $+150^{\circ}$ |
| $\begin{gathered} 100 \\ \text { Ohms } \end{gathered}$ | $+4.5$ | $+2.5$ | +1.5 | 0 | $\pm 1.0$ | $\pm 1.5$ | $+3.5$ | $+5.5$ |
| $\begin{aligned} & 1,000 \\ & \text { Ohms } \end{aligned}$ | $+5.5$ | +3.0 | $+1.5$ | 0 | $\pm 1.0$ | $\pm 2.0$ | $+4.5$ | + 6.5 |
| $\begin{aligned} & 10,000 \\ & \text { Ohms } \end{aligned}$ | $+7.0$ | $+3.5$ | $+2.0$ | 0 | $\pm 1.0$ | $\pm 2.5$ | $+5.5$ | $+8.5$ |
| $\begin{aligned} & 100,000 \\ & \text { Ohms } \end{aligned}$ | $+8.0$ | $+4.0$ | $+2.0$ | 0 | $\pm 15$ | $\pm 3.0$ | $+6.0$ | $+10.5$ |
| $1$ <br> Megohm | +10.0 | $+5.0$ | $+2.5$ | 0 | $\pm 1.5$ | $\pm 3.5$ | $+7.5$ | +12.5 |

For " S ", " A ", " B " and " DB " tapers multiply percentage figures shown above by 1.25 .

## Taper data

TAPERS


END RESISTANCE

| TAPER | MINIMUM RESISTANCE BETWEEN TERMINALS 1 and 2 | MINIMUM RESISTANCE BETWEEN TERMINALS 2 and 3 |
| :---: | :---: | :---: |
| U \& S | $\square$ | $\square$ |
| A | $\square$ | $\underline{1}$ |
| B | 2 | 11 |
| DB | 3 | 2 |

a "Less than $.004 \%$ of total resistance." or "less than 4 ohms" whichever is greater.

- "Less than $1 \%$ of total resistance," or "less than 4 ohms" whichever is greater.
a Less than 4 ohms.


## Ordering information

1. Type (single, dual or triple).
2. Total resistance value (each element on multisection controls) in ohms.
3. Tolerance (each element on multi-section controls) percent.
4. Taper (each element on multi-section controls).
5. Bushing type (plain, locking, shaft watertight, or panel and shaft watertight).
6. Bushing length in inches or millimeters.
7. Shaft ending (plain, slotted or flatted).
8. Shaft length from mounting surface in inches or millimeters.
9. Locating lug option (1, 2, 3 or 4 ).
10. Mounting hardware ( $A-B$ standard or other).
11. Part number you have assigned, if any.
12. Marking required on the part.
13. Special features.
14. Remarks.

Multiple resistor power derating - The permissible power dissipation in one resistor element is a function of the power dissipation in the other elements.
Maximum continuous power rating in watts with entire resistor elements in the circuit are as follows:
$\left(\frac{\mathrm{W} 1}{3}\right)^{2}+\left(\frac{\mathrm{W} 2}{2.4}\right)^{2}+\left(\frac{\mathrm{W} 3}{2.4}\right)^{2}=1$ (Maximum)
Where $W_{1}=$ Watts in entire first or panel resistor element. $\mathrm{W}_{2}=$ Watts in entire second or middle resistor element.
$W_{3}=$ Watts in entire third or rear resistor element.
Derating with respect to rotation - rheostat application

| Percent <br> Rotation | Multiply <br> Wattage <br> Rating By | Percent <br> Rotation | Multiply <br> Wattage <br> Rating By |
| :---: | :---: | :---: | :---: |
| 100 | 1.00 | 40 | 0.81 |
| 90 | 0.99 | 30 | 0.68 |
| 80 | 0.98 | 20 | 0.49 |
| 70 | 0.96 | 10 | 0.23 |
| 60 | 0.93 | 0 | 0.11 |
| 50 | 0.89 |  |  |


| DUAL | First or Panel Resistor Element $\mathrm{W}_{1}$ | Second or Middle Resistor Element $W_{2}$ | Third or Rear Resistor Element $W_{3}$ |
| :---: | :---: | :---: | :---: |
|  | 3.0 | 0 |  |
|  | 2.75 | 0.96 |  |
|  | 2.50 | 1.33 |  |
|  | 2.25 | 1.59 |  |
|  | 2.00 | 1.79 |  |
|  | 1.75 | 1.95 |  |
|  | 1.50 | 2.08 |  |
|  | 1.25 | 2.18 |  |
|  | 1.00 | 2.27 |  |
|  | 0.75 | 2.32 |  |
|  | 0.50 | 2.37 |  |
|  | 0.25 | 2.39 |  |
|  | 0 | 2.40 |  |
| TRIPLE | $\mathrm{R}_{1}$ | R2 | R3 |
|  | 2.5 Watts | 1.0 Watt | 0.87 Watt |
|  | 2.5 Watts | 0.5 Watt | 1.23 Watts |
|  | 2.0 Watts | 1.5 Watts | 0.97 Watt |
|  | 2.0 Watts | 1.0 Watt | 1.48 Watts |
|  | 2.0 Watts | 0.5 Watt | 1.72 Watts |
|  | 1.5 Watts | 2.0 Watts | 0.56 Watt |
|  | 1.5 Watts | 1.5 Watts | 1.44 Watts |
|  | 1.5 Watts | 1.0 Watt | 1.82 Watts |
|  | 1.5 Watts | 0.5 Watt | 2.02 Watts |
|  | 1.0 Watt | 2.0 Watts | 1.06 Watts |
|  | 1.0 Watt | 1.5 Watts | 1.70 Watts |
|  | 1.0 Watt | 1.0 Watt | 2.03 Watts |
|  | 1.0 Watt | 0.5 Watt | 2.20 Watts |
|  | 0.5 Watt | 2.0 Watts | 1.26 Watts |
|  | 0.5 Watt | 1.5 Watts | 1.83 Watts |
|  | 0.5 Watt | 1.0 Watt | 2.14 Watts |
|  | 0.5 Watt | 0,5 Watt | 2.31 Watts |

## DIMENSIONS

## Plain or shaft watertight bushing



## DIMENSIONS

## Standard locking bushing



Special locking bushing


Panel-shaft watertight bushing


Dual - Triple


On triple resistors, outer shaft operates
panel section and inner shaft operates
middle and rear section.

| DIMENSIONS COMMON TO ALL UNITS <br> Mounting holes | Basic dimensions in inches Dirnensions shown in PARENTHESES are in millimeters |
| :---: | :---: |

TOLERANCE
Dimensional Tolerance $\pm .016$
Except as Specified. NOT TO SCALE


Mounting dimension for resistors with plain bushings, shaft watertight bushings. and locking bushings.


Mounting dimension for resistor with panel and shaft watertight bushings.

## Standard slotted shaft ending



## туре K

## DIMENSIONS COMMON TO ALL UNITS

## Standard flatted shaft ending



Dimensions for resistors with concentric shafts


Terminal connections to resistance element


## Locating lug options



Option \#4
(No Locating Lug)

## Mounting hardware

When Specified, Any of the Hardware Illustrated can be supplied (See Page 101)


Mounting Washer M-3462


Lock Washer M-2898


Mounting Nut M-2786


Mounting Washer M-3461


Lock Washer M-3252


Mounting Nut M-1766


Lock Nut B-13750


Jam Lock Nut M-3638


Pal Nut M-2907



## SPECIFICATIONS

## General

Temperature range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below. Other values available.

OHMS

| 100 | 1 K | 10 K | 100 K | 1 Meg. |
| :---: | ---: | ---: | ---: | ---: |
| 250 | 2.5 K | 25 K | 250 K | 2.5 Meg. |
| 500 | 5 K | 50 K | 500 K | 5 Meg. |

Total resistance tolerances $- \pm 20 \%$ or $\pm 10 \%$.
Tapers - Available in following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| U | 100 Ohms to 5.0 Megohms |
| A, B, S, \& DB | 500 Ohms to 2.5 Megohms |

See chart on following pages for explanation of tapers. Special tapers, where practical, can be supplied.
End resistance - See chart on following pages.

## Electrical

Power -0.8 watt maximum at $+70^{\circ} \mathrm{C}$, for " U " linear taper, provided voltage is not exceeded.
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ to zero at $+150^{\circ} \mathrm{C}$. Derate power 50 percent for non-metallic mounting and for resistors with "A", "B", " S ", and "DB" tapers. For rheostat applications, derate power directly with shaft or actuator position.
Voltage - 350 volts maximum working voltage (RMS or DC), or as determined by $E_{\text {max }}=\sqrt{P R}$, whichever is less (at sea level).

# Type Hot-Molded Panel Potentiometers 

## $1 / 2$ (0.50) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.8 Watt ( $70^{\circ} \mathrm{C}$ )

## 100 Ohms to 5.0 Megohms

FEATURES

- Linear and Non-Linear Tapers
- Immersion Sealed
- Lug or Pin Terminals

Dielectric withstanding voltage - Will withstand a one second test of 750 volts (RMS or DC) at sea level or 350 volts (RMS or DC) at 3.4 inches ( 86,36 $\mathrm{mm})$ mercury.
Insulation resistance - 1000 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.
Voltage characteristic -0.005 percent per volt or 0.5 ohm, whichever is greater.

Capacitance - The capacitance between terminal \#1 and \#3 with terminal \#2 "floating" is approximately 0.5 to 0.75 pF at 1 KHz .
The capacitance between terminal \#1 (grounded to bushing) and terminal \#3 (shaft in extreme clockwise position) is approximately 3.0 to 3.7 pF at 1 KHz .
The capacitance between all terminals shorted together and the bushing is approximately 5.5 to 6.5 pF at 1 KHz .
In all cases capacitance indicated is for resistor only and does not include capacitance of measuring lead wires on test fixtures.

## Operational

Load life - 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$ ( 1.5 hour "ON," 0.5 hour "OFF").
Rotational life - 10 percent maximum change in total resistance as a result of a 50,000 cycle life test without load.

## Mechanical

Shafts - Diameter of shafts .125 inch ( $3,18 \mathrm{~mm}$ ). Minimum length .312 inch ( $7,94 \mathrm{~mm}$ ). Maximum length 2.500 inches ( $63,50 \mathrm{~mm}$ ) with plain, (Mechanical specifications continued on next page.)
screwdriver slotted or flatted shaft endings. Preferred shaft lengths and endings are listed in the table below.

## PREFERRED SHAFT LENGTHS

| Plain <br> Round |  |  |  | Screwdriver Slotted |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inches | .500 | .625 | .375 | .438 | .500 | .625 | .750 | .875 |  |
| mm | 12,70 | 15,88 | 9,52 | 11,11 | 12,70 | 15,88 | 19,05 | 22,22 |  |

Other lengths available in $1 / 64$ inch $(0,40 \mathrm{~mm})$ increments. All shaft lengths are measured from the mounting face of the resistor to the free end of the shaft.
Bushings - All bushings have a $32-$ NEF-2A thread and are .250 inch ( $6,35 \mathrm{~mm}$ ) in diameter. Bushing lengths and types are shown in the table below.

| Plain |  | Locking |  | Panel Watertight Plain |  | Panel Watertight Locking |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inch | mm | Inch | mm | Inch | mm | Inch | mm |
| 250 | 6,35 | . 375 | 9,52 | . 250 | 6,35 | . 375 | 9,52 |
| . 375 | 9,52 | . 500 | 12,70 | . 375 | 9,52 | . 500 | 12,70 |
| . 500 | 12,70 | . 625 | 15,88 | . 500 | 12,70 |  |  |

After lock nuts on locking bushing are tightened with a torque of 8 inch-pounds ( $9,22 \mathrm{kgf}-\mathrm{cm}$ ) shafts will not turn with torques up to 20 inch-ounces ( $1,44 \mathrm{kgf}$ cm ).
Hardware - Resistors are normally supplied with one mounting nut, M.4721, and one internal tooth lock washer, M-4748. Resistors with shaft lock bushings are supplied with one lock nut, M-4761, in addition to the above. Unless otherwise specified, all hardware shipped in bulk.
Mounting plate B-28868 and printed wiring board F-19942 can also be supplied (separately or mounted on unit) to adapt bushing type resistors for horizontal mounting on printed wiring boards. See DIMENSIONS.
Locating lugs - Four locating lug options can be provided so the resistor may be indexed with respect to the surface on which it is mounted. Unless otherwise specified, resistors are supplied in accordance with Option No. 2. See DIMENSIONS.
Turning torque -0.5 to 3 inch-ounces ( 0,036 to $0,22 \mathrm{kgf}-\mathrm{cm}$ ) at $+25^{\circ} \mathrm{C}$ and 13 inch-ounces ( 0,94 $\mathrm{kgf}(\mathrm{cm})$ maximum at $-55^{\circ} \mathrm{C}$.
Stop torque -4 inch-pounds ( $4,61 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Rotation - Mechanical rotation is $295^{\circ}+5^{\circ}$.
Electrical rotation is $270^{\circ}$ nominal,
Backlash - $3^{\circ}$ maximum.
Construction - Materials are corrosion resistant and essentially non-magnetic; terminals are treated for easy soldering.
The resistor incorporates an internal " O " ring between the shaft and bushing. External surfaces are given special treatment so that the entire resistor is immersion sealed or "watertight."

A "panel watertight" bushing is available. This bushing is provided with an external " O " ring in addition to the internal "O" ring supplied as standard.
Immersion - No continuous stream of bubbles (4 or more) emanating from the resistor as a result of the immersion test ( 1 minute in water at $+85^{\circ} \mathrm{C}$ ).
Weight - The exact weight of individual resistors depends on the precise mechanical specifications involved. An approximate net weight of typical resistor including hardware normally specified would be 0.24 ounce ( $6,8 \mathrm{gms}$ ),
Marking - Allen-Bradley part number and nominal total resistance marked in two lines. Other marking possible, limited to maximum of 16 characters in each of two lines. A-B monogram plus "Type L" always included.

## Environmental

Vibration -2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 204, condition "C" of MIL-STD-202.)
Shock -2 percent maximum change in total resistance. 5 percent maximum change in resistance setting. (Tested per method 213, condition "I" of MIL-STD-202.)
Moisture resistance -10 percent maximum change in total resistance. (Method 106 of MIL.STD. 202.)

Corrosion resistance - Materials show no corrosion after a 200 hour salt spray test. (Method 101 of MIL-STD-202.)
Effect of soldering - 2 percent maximum change in total resistance as a result of immersing the terminals in $+350^{\circ} \mathrm{C}$ solder to within 0.125 inch $(3,18 \mathrm{~mm})$ of the resistor body for 5 seconds.
Temperature cycling - 3 percent maximum change in total resistance as a result of the temperature cycling test (five cycles $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ).
Low temperature operation - 2 percent maximum change in total resistance as a result of the low temperature operation test ( $-55^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load).
Low temperature storage -2 percent maximum change in total resistance as a result of the storage test (24 hours at $-63^{\circ} \mathrm{C}$ ).
Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See table below.

| Nominal <br> Resistance | Degrees Celsius " $^{\prime \prime}$ Linear Taper |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $-55^{\circ}$ | $-\mathbf{2 5}^{\circ}$ | $0^{*}$ | $\mathbf{2 5}^{\circ}$ | $+55^{\circ}$ | $+85^{\circ}$ | $+120^{\circ}$ | $+150^{\circ}$ |
| $\mathbf{1 0 0 \text { Ohms }}$ | +4.5 | +2.5 | +1.5 | 0 | $\pm 1.0$ | $\pm 1.5$ | +3.5 | +5.5 |
| 1,000 Ohms | +5.5 | +3.0 | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | +4.5 | +6.5 |
| 10,000 Ohms | +7.0 | +3.5 | +2.0 | 0 | +1.0 | +2.5 | +5.5 | +8.5 |
| 100,000 Ohms | +8.0 | +4.0 | +2.0 | 0 | $\pm 1.5$ | $\pm 3.0$ | +6.0 | +10.5 |
| 1 Megohm | +10.0 | +5.0 | +2.5 | 0 | +1.5 | +3.5 | +7.5 | +12.5 |

For " S ", " A ", " B " and " DB " tapers multiply percentage figures shown above by 1.25 .

Type


TAPERS

## Ordering information

1. Type (LA, LB or LP).
2. Bushing length.
3. Mounting hardware.
4. Taper.
5. Shaft ending.
6. Your part number.
7. Total resistance.
8. Shaft length.
9. Marking required.
10. Total resistance tolerance.
11. Locating lug option.
12. Remarks.
13. Bushing type.

## DIMENSIONS

## Resistor with lug terminals

Plain Bushing


Locking Bushing
END RESISTANCE

| TAPER | MINIMUM RESISTANCE BETWEEN TERMINALS 1 and 2 | MINIMUM RESISTANCE BETWEEN TERMINALS 2 and 3 |
| :---: | :---: | :---: |
| U \& S | $\square$ | - |
| A | H | 12 |
| B | [1 | $\pm$ |
| DB | 3 | 12 |

- "Less than . $004 \%$ of total resistance," or "less than 15 ohms" whichever is greater.
[2 "Less than $1 \%$ of total resistance," or "less than 15 ohms" whichever is greater.
a Less than 15 ohms.

Panel watertight bushing

Plain Bushing


Locking Bushing


Standard Bushing Length

$$
\begin{gathered}
.375-.500 \\
(9,52)-(12.70)
\end{gathered}
$$

Maximum Mounting Panel Thickness when used with standard hardware.
$.062-.188$

## Lug options

Plain and Locking Bushing


Panel Watertight Bushing


Resistor for printed circuit board mounting
Plain Bushing


## DIMENSIONS

## Shafts for resistor for printed circuit board mounting

Screwdriver Slotted


Shaft in Extreme
Counterclock wise Positio
Counterclockwise Position
Screwdriver Slot in line with
Screwdriver Slot i
Movable Contact


## Hardware




Basic dimensions in inches.
Dimensions shown in PARENTHESES are in millimeters.

## TOLERANCES

Dimensional Tolerance
$\pm .016(0,40)$
Angular
Tolerance $\pm 5^{\circ}$
Except as specified.
NOT TO SCALE

Resistor
Connections


## EXPLANATION OF PART NUMBERS

NOTE: Part number format allows development of some part numbers which cannot be manufactured. (Example: LA2N400P101AA which has an invalid shaft length and invalid resistance value for an "A" taper.) Check parameter limits in preceding text, when developing a part number.
Combinations which are valid and do not fit into a part number, (Examples: Special tapers, special shafts, etc.) will be assigned a special part number by the factory. Refer to "Ordering Information", in the preceding text, for the required data for the assignment of a special part number by the factory.


Potentiometers
The MINI-METRIC ${ }^{\circledR}$
0.1 Watt ( $40^{\circ} \mathrm{C}$ )

## 10,0 MM Cube

## 100 Ohms to 1.0 Megohm

## FEATURES

- $\pm 20 \%$ Tolerance
- Linear and Non-Linear Tapers
- Plastic Shaft, Bushing and Case
- Single (Type MA) and Dual (Type MD) Resistors
- Switches (Type MS)


## Electrical

Power - 0.1 watt on the panel section; 0.05 watt on the rear section at $+40^{\circ} \mathrm{C}$, for " U " linear taper, provided voltage is not exceeded.
Power derating - Derate power linearly from $+40^{\circ} \mathrm{C}$ to zero at $+100^{\circ} \mathrm{C}$. Derate power 50 percent for resistors with " A " and " B " tapers. For rheostat applications, derate power directly with shaft or actuator position.
Voltage - 90 volts maximum working voltage (RMS or $D C$ ), or as determined by $E_{\text {max }}=\sqrt{P R}$, whichever is less (at sea level).
Dielectric withstanding voltage - Maximum continuous voltage 90 volts (RMS or DC) at sea level. Will withstand a one second test of 1000 volts (RMS) at sea level.
Insulation resistance - 1000 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.

## Operational

Contact resistance variation - Linear taper: less than 2 percent or 3 ohms, whichever is greater. ' $A$ ' or ' $B$ ' tapers: less than 4 percent or 6 ohms, whichever is greater. (Operational specifications continued on Page 115.)

## Operational

Load life - 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+40^{\circ} \mathrm{C}$ ( 1.5 hour "ON", 0.5 hour "OFF").
Rotational life - 10 percent maximum change in total resistance as a result of a 10,000 cycle life test.

## Mechanical

Shafts - Diameter of shafts $3,0 \mathrm{~mm}$ plain shaft ending. Standard shaft lengths in $\mathrm{mm}( \pm 0,51): 10,0$, $12,5,16,0,20,0,25,0$. All shaft lengths are measured from the mounting face of the resistor to the free end of the shaft.
Bushings -7 mm long, 7 mm diameter, plain bushing with $\mathrm{M} 7 \times 0,75$ thread.
Turning torque $-1,7$ to $21 \mathrm{mN} \cdot \mathrm{m}$ ( 0.24 to 3.0 inchounces) at $+25^{\circ} \mathrm{C}$.
Mounting torque - Torque applied to mounting nuts should not exceed $900 \mathrm{mN}-\mathrm{m}$ ( 8 inch-pounds).
Stop torque $-225 \mathrm{mN}-\mathrm{m}$ ( 2 inch-pounds) minimum.
Rotation - Mechanical travel $300^{\circ}$, electrical travel $220^{\circ}$.
Terminals - As shown on Page 116. Mounting bracket 60136-035-01 may be used with terminal option C.
Construction - Materials are corrosion resistant and essentially non-magnetic; enclosure is dust and splash resistant. Shaft and bushing are plastic.
Marking - Allen-Bradley part number and nominal total resistance marked in two lines. Other marking possible: 8 characters in each of three lines. A-B monogram plus "Type M" always included.

## Rotary switches

Type 1001 or 2001 as shown. Each switch consists of sliding contacts bearing on a metal plate or substrate to achieve the "ON" and "OFF" positions. Switch actuation travel is 33 degrees.

The switches will be electrically and mechanically operative after a 10,000 cycle life test: make and break 0.4 amps .17 volts. DC at $+25^{\circ} \mathrm{C}$ with resistive load.


Switch Number 1001 Shown in Detent at CCW End of Rotation. Available on Rear Section Only.


Switch Number 2001 Shown in Detent at CW End of Rotation. Available on Panel Section Only.

## Environmental

Vibration -2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 204, condition "C" of MIL-STD-202.)
Shock -2 percent maximum change in total resistance. 5 percent maximum change in resistance setting. (Tested per method 213, condition " I " of MIL-STD-202.)
Humidity -6.5 percent maximum change in total resistance. (Method 103B, condition " B " of MIL-STD-202.)
Corrosion resistance - Materials show no corrosion after the 96 hour test. (Method 101 of MIL-STD-202.)
Effect of soldering - 1 percent maximum change in total resistance. (Method 210A, condition " $E$ " of MIL-STD-202). Temperatures over $280^{\circ} \mathrm{C}$ may permanently damage the variable resistors.
Temperature cycling -3 percent maximum change in total resistance as a result of the temperature cycling test. (Five cycles at $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.)
Low temperature operation -3 percent maximum change in total resistance as a result of the low temperature operation test. ( $-25^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load.)

## Ordering information

1. Taper (each section on dual controls).
2. Total resistance (each section on dual controls).
3. Total resistance tolerance (each section on dual controls).
4. Switch type.
5. Shaft length.
6. Detent (CW or CCW).
7. Your part number.
8. Marking required.

## Taper data

TAPERS


Percent Mechanical Clockwise Rotation

Terminal options


Dual


## Conversion table

| MM | INCH | MM | INCH | MM | INCH |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0,025 | 001 | 2,12 | 084 | 9.75 | . 384 |
| 0,076 | 003 | 2.50 | . 098 | 10,00 | . 394 |
| 0.13 | . 005 | 2.54 | 100 | 10,41 | 410 |
| 0,20 | . 008 | 2,67 | 105 | 10.77 | 424 |
| 0.25 | . 010 | 3,00 | 118 | 11.05 | 435 |
| 0,30 | . 012 | 3.15 | 124 | 12.00 | 472 |
| 0.38 | 015 | 4.30 | 169 | 12,50 | 492 |
| 0.41 | . 016 | 4,32 | . 170 | 12.70 | 500 |
| 0,64 | . 025 | 5,00 | 197 | 12.95 | . 510 |
| 0.70 | 028 | 5.08 | 200 | 16,00 | 630 |
| 0.94 | 037 | 7.00 | 276 | 20.00 | 787 |
| 1.00 | 039 | 8.23 | . 324 | 25.00 | 984 |
| 1.02 | . 040 | 8.74 | . 344 |  |  |
| 1.22 | 048 | 9.65 | . 380 |  |  |

Resistor Connections


## DIMENSIONS

Dimensions apply to types MA, MD and MS except terminals 1,2 and 3 are omitted from type MA.

Basic dimensions in millimeters.
Terminal spacing determined at the mounting surface.
TOLERANCE
Dimensional tolerance $\pm 0,25$ Except as Specified.
NOT TO SCALE


Mounting Nut 29340-901-23


Layout Dimensions for Mounting Bracket


Lock Washer 29309-901-23

## Conductive Plastic Panel Potentiometers

## EXPLANATION OF PART NUMBERS



Taper Type and Total
Resistance Tolerance or Switch

2 - Linear (U) $\pm 20 \%$
3 - CW Modified $\log (A) \pm 20 \%$
4 - CCW Modified $\log (B) \pm 20 \%$.
5 - Switch
6 - Type MA - Panel Section


Example: MA2B66G2B
Denotes: MA - Single Variable Resistor
2 - Plain 7 mm Bushing
B - Shaft Length Of $12,5 \mathrm{~mm}$
6 - MA-Panel Section (No Element in
6 - MA-Panel Section $\}$ First Section
G - 10K $\Omega$ Resistance Value
2 - Linear Taper $\pm 20 \%$
B $-12,95 \mathrm{~mm}$ Long Straight Terminals
Total Resistance Value or Switch Type

A -100 Ohm
B - 220 Ohm
C -470 Ohm
D -1 K
E -2.2 K
F-4.7K
G -10 K
H -22 K
J -47 K
K -100 K
L -220 K
M - 470 K
$\mathrm{N}-1 \mathrm{Meg}$
1-1001 Switch (CCW detent)
(Rear Section Only)
2 - 2001 Switch (CW detent)
(Panel Section Only)
6 - Type MA - Panel Section

## MS2E25K4D

Denotes: MS - Variable Resistor with a Switch
2 - Plain 7 mm Bushing
E - Shaft Length Of $25,0 \mathrm{~mm}$
$2-2001$ Switch (CW Detent)
5 - Switch
K - $100 \mathrm{~K} \Omega$ Resistance Value
4 - CCW Modified Log (B) Taper $\pm 20 \%$
D - 2,54 mm Front Form Terminals

CAUTION: Part number format does not exclude invalid mechanical and/or electrical combinations. Check parameter limits in preceding text.


SPECIFICATIONS

## General

Temperature range $--55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below. Other values available.

| OHMS |  |  |  |  |  |
| :---: | ---: | :---: | :---: | :--- | :---: |
| 100 | 1 K | 10 K | 100 K | 1.0 Meg. |  |
| 200 | 2 K | 20 K | 200 K | 2.0 Meg. |  |
| 220 | 2.2 K | 22 K | 220 K | 2.2 Meg. |  |
| 250 | 2.5 K | 25 K | 250 K | 2.5 Meg. |  |
| 470 | 4.7 K | 47 K | 470 K | 4.7 Meg. |  |
| 500 | 5 K | 50 K | 500 K | 5.0 Meg. |  |

Total resistance tolerances $- \pm 20 \%$ or $\pm 10 \%$.
Tapers - Available in the following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| $U$ | 100 Ohms to 5.0 Megohms |
| A, B, S \& DB | 500 Ohms to 2.5 Megohms |

See chart on following pages for explanation of tapers. Special tapers, where practical, can be supplied.
End resistance - See chart on following pages. Applicable military specification - Many of the variable resistors may be ordered as Style RV6 of MIL-R-94.

## Electrical

Power - 0.5 watt maximum at $+70^{\circ} \mathrm{C}$ for " U " linear taper provided voltage rating is not exceeded.
Power derating - Derate power linearly from
$+70^{\circ} \mathrm{C}$ to zero at $+120^{\circ} \mathrm{C}$. Derate power 50 percent for non-metallic mounting and for resistors

## Type W

## Hot-Molded Panel Potentiometers

$1 / 2$ ( 0.50 ) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.5 Watt $\left(70^{\circ} \mathrm{C}\right)$ 100 Ohms to 5.0 Megohms

## FEATURES

- Linear and Non-Linear Tapers
- Immersion Sealed
- Style RV6
with " $A$ ", " $B$ ", " S ", and "DB" tapers. For rheostat applications, derate power directly with shaft or actuator position.
Voltage - 350 volts maximum working voltage (RMS or DC), or as determined by $E_{\text {max. }}=\sqrt{P R}$, whichever is less (at sea level).
Dielectric withstanding voltage - Maximum continuous voltage 350 volts (RMS or DC) at sea level. Will withstand a one second test of 750 volts (RMS or DC) at sea level or 350 volts (RMS or DC) at 3.4 inches ( $86,36 \mathrm{~mm}$ ) mercury.
Insulation resistance - 1000 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.
Voltage characteristic -0.005 percent per volt or 0.5 ohm , whichever is greater.

Capacitance - The capacitance between terminal \#1 and \#3 with terminal \#2 "floating" is approximately 0.5 to 0.75 pF at 1 KHZ .
The capacitance between terminal \#1 (grounded to bushing) and terminal \#3 (shaft in extreme clockwise position) is approximately 3.0 to 3.7 pF at 1 KHz .
The capacitance between all terminals shorted together and the bushing is approximately 5.5 to 6.5 pF at 1 KHz .
In all cases capacitance indicated is for resistor only and does not include capacitance of measuring lead wires on test fixtures.

## Operational

Load life - 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$ ( 1.5 hour "ON", 0.5 hour "OFF").
(Operational specifications continued on next page.)

## Operational

Rotational life -10 percent maximum change in total resistance as a result of a 50,000 cycle life test without load.

## Mechanical

Shafts -Diameter of shafts . 125 inch ( $3,18 \mathrm{~mm}$ ). Minimum length .125 inch ( $3,18 \mathrm{~mm}$ ). Maximum length 2.500 inches $(63,50 \mathrm{~mm})$ with plain, screwdriver slotted or flatted shaft endings. Preferred shaft lengths and endings are listed in the tables below.

## PREFERRED SHAFT LENGTHS

Plain Round

| Inches | .500 | .625 |
| :---: | :---: | :---: |
| mm | 12,70 | 15,88 |

Screwdriver Slotted

| Inches | 375 | .438 | .500 | .625 | .750 | .875 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 9,52 | 11,11 | 12,70 | 15,88 | 19,05 | 22,22 |

Other lengths available in $1 / 64$ inch ( $0,40 \mathrm{~mm}$ ) increments. All shaft lengths are measured from the mounting face of the resistor to the free end of the shaft. The shaft can be flush with the bushing end or recessed on resistors with plain bushings.
Bushings - All bushings have a 32-NEF-2A thread and are .250 inch $(6,35 \mathrm{~mm})$ in diameter. Bushing lengths and types are shown in the table below.

|  |  |  | Panel <br> Plain |  | Locking |  | Watertight <br> Plain |  | Panel <br> Watertight <br> Locking |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| Inch | mm | Inch | mm | Inch | mm | Inch | mm |  |  |
| .250 | 6,35 | .375 | 9,52 | .250 | 6,35 | .375 | 9,52 |  |  |
| .375 | 9,52 | .500 | 12,70 | .375 | 9,52 | .500 | 12,70 |  |  |
| .500 | 12,70 | .625 | 15,88 | .500 | 12,70 |  |  |  |  |

After lock nuts on locking bushing are tightened with a torque of 8 inch-pounds ( $9,22 \mathrm{kgf}-\mathrm{cm}$ ) shafts will not turn with torques up to 20 inch-ounces ( $1,44 \mathrm{kgf}-\mathrm{cm}$ ).
Hardware - Resistors are normally supplied with mounting nut, M-4721, and one internal tooth lock washer, M-4748. Resistors with shaft lock bushings are supplied with one lock nut, M-4761, in addition to the above. Unless otherwise specified, all hardware shipped in bulk.
Locating lugs - Four locating lug options can be provided so resistors may be indexed with respect to the surface on which they are mounted. Unless otherwise specified, resistors are supplied in accordance with Option No. 2. See DIMENSIONS.
Turning torque -0.5 to 3 inch-ounces ( 0,036 to $0,22 \mathrm{kgf} \cdot \mathrm{cm}$ ) at $+25^{\circ} \mathrm{C}$ and 13 inch-ounces ( $0,94 \mathrm{kgf}$ cm ) maximum at $-55^{\circ} \mathrm{C}$.
Stop torque -4 inch-pounds ( $4,61 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Rotation - Mechanical rotation is $295^{\circ} \pm 5^{\circ}$.
Electrical rotation is $270^{\circ}$ nominal,
Backlash - $3^{\circ}$ maximum.

Construction - Materials are corrosion resistant and essentially non-magnetic; terminals are treated for easy soldering.
The resistor incorporates an internal " O " ring between the shaft and bushing. External surfaces are given special treatment so that the entire resistor is immersion sealed.
A panel "watertight" bushing is available. This bushing is provided with an external "O" ring in addition to the internal " O " ring supplied as standard.
Terminals - These resistors are supplied with solder lug terminals (Type WA) or printed circuit pin terminals (Type WP). Terminals are treated for easy soldering.
Immersion - No continuous stream of bubbles (4 or more) emanating from the resistor as a result of the immersion test ( 1 minute in water at $+85^{\circ} \mathrm{C}$ ).
Weight - The exact weight of individual resistors depends on the precise mechanical specifications involved. An approximate net weight of a typical resistor including hardware normally specified would be 0.24 ounce ( $6,8 \mathrm{gms}$ ).
Marking -Allen-Bradley part number and nominal total resistance marked in two lines. Other marking possible, limited to maximum of 16 characters in each of two lines. A-B monogram plus "Type W" always included.

## Environmental

Vibration - 2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 204, condition "C" of MIL-STD-202.)
Shock -2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 213, condition "l" of MIL-STD-202.)
Moisture resistance -10 percent maximum change in total resistance. (Method 106 of MIL-STD-202.)
Corrosion resistance - Materials show no corrosion after a 200 hour salt spray test. (Method 101 of MIL-STD-202.)
Eflect of soldering -2 percent maximum change in total resistance as a result of immersing the terminals in $+350^{\circ} \mathrm{C}$ solder to within. 125 inch $(3,18 \mathrm{~mm})$ of the resistor body for 5 seconds.
Temperature cycling -3 percent maximum change in total resistance as a result of the temperature cycling test (five cycles $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ ).
Low temperature operation - 2 percent maximum change in total resistance as a result of the low temperature operation test $\left(-55^{\circ} \mathrm{C}\right.$ for two hours without load and 45 minutes with rated load).
Low temperature storage -2 percent maximur change in total resistance as a result of the stc. test ( 24 hours at $-63^{\circ} \mathrm{C}$ ).

Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See table to right.
For " S ", " A ", " B " and "DB" tapers multiply percentage figures shown by 1.25 .

| Nominal Resistance | Degrees Celsius - "U" Linear Taper |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $-55^{\circ}$ | $-25^{\circ}$ | $0{ }^{\circ}$ | $+25^{\circ}$ | $+55^{\circ}$ | $+85^{\circ}$ | $+120^{\circ}$ |
| 100 Ohms | + 4.5 | +2.5 | +1.5 | 0 | $\pm 1.0$ | $\pm 1.5$ | +3.5 |
| 1,000 Ohms | $+5.5$ | $+3.0$ | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | + 4.5 |
| 10,000 Ohms | $+7.0$ | $+3.5$ | $+2.0$ | 0 | $\pm 1.0$ | $\pm 2.5$ | $+5.5$ |
| 100,000 Ohms | + 8.0 | + 4.0 | $+2.0$ | 0 | $\pm 1.5$ | $\pm 3.0$ | +6.0 |
| 1 Megohm | $+10.0$ | $+5.0$ | $+2.5$ | 0 | $\pm 1.5$ | $\pm 3.5$ | $+7.5$ |

## Taper data



| END RESISTANCE |  |  |
| :---: | :---: | :---: |
|  | MINIMUM | MINIMUM |
| TAPER | RESISTANCE | RESISTANCE |
|  | BETWEEN | BETWEEN |
|  | TERMINALS | TERMINALS |
|  | 1 and 2 | 2 and 3 |
| U \& S | a | a |
| A | B | a |
| B | DB | B |

- "Less than .004\% of total resistance," or "less than 15 ohms" whichever is greater.
a "Less than $1 \%$ of total resistance," or "less than 15 ohms" whichever is greater.
3 Less than 15 ohms.


## Ordering information

1. Type (WA or WP).
2. Taper,
3. Total resistance.
4. Total resistance tolerance.
5. Bushing type.
6. Shaft length.
7. Bushing length.
8. Shaft ending.
9. Locating lug option.
10. Mounting hardware.
11. Your part number.
12. Marking required.
13. Remarks.

Panel watertight bushing
Plain

## Shaft endings



## Lug options

Plain and Locking Bushing
Panel Watertight Bushing


## ${ }^{\text {trpe }} \mathbf{W}$

## DIMENSIONS

## Resistor for printed circuit board mounting

Plain Bushing


## EXPLANATION OF PART NUMBERS

NOTE: Part number format allows development of some part numbers which cannot be manufactured. (Example: WA2N400P101AA which has an invalid shaft length and invalid resistance value for an " A " taper.) Check parameter limits in preceding text, when developing a part number.
Combinations which are valid and do not fit into a part number, (Examples: Special tapers, special shafts, etc.) will be assigned a special part number by the factory. Refer to "Ordering Information" in preceding text, for the required data for the assignment of a special part number by the factory.



SPECIFICATIONS

## General

Temperature range $--55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below. Other values available.

OHMS

| 50 | 1 K | 10 K | 100 K | 1.0 Meg. |
| ---: | ---: | :--- | :--- | :--- |
| 100 | 2.5 K | 25 K | 250 K | 2.0 Meg. |
| 250 | 5 K | 50 K | 500 K | 2.5 Meg. |
| 500 |  |  |  | 5.0 Meg. |

Total resistance tolerances - $\pm 20 \%$ or $\pm 10 \%$.
Tapers - Available in the following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| U | 50 Ohms to 5.0 Megohms |
| A, B, S, \& DB | 250 Ohms to 5.0 Megohms |

See chart on following pages for explanation of tapers. Special tapers, where practical, can be supplied.
End resistance - See chart on following pages.

## Electrical

Power -2.25 watt maximum at $+70^{\circ} \mathrm{C}$ (single resistors only) provided voltage rating is not exceeded.
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ to zero at $+120^{\circ} \mathrm{C}$. Derate power 50 percent for non-metallic mounting and for resistors with "A", "B", "S", and "DB" tapers. See following pages for additional power derating information.

## Type E Hot-Molded Panel Potentiometers

## 1 MILLION ROTATIONS

1-5/32 (1.156) Inch
(29,36 mm) Diameter 2.25 Watts ( $70^{\circ} \mathrm{C}$ ) 50 Ohms to 5.0 Megohms

## FEATURES

- Linear and Non-Linear Tapers
- Single and Dual Sections
- Slip Clutch Available

Voltage -500 volts maximum working voltage (RMS or DC), or as determined by Emax $=\sqrt{\mathrm{PR}}$, whichever is less (at sea level).
Dielectric withstanding voltage - Maximum continuous voltage 500 volts (RMS or DC) at sea level. Will withstand a one second test of 1000 volts (RMS or DC) at sea level or 500 volts (RMS or DC) at 3.4 inches $(86,36 \mathrm{~mm})$ mercury.
Voltage characteristic - 0.005 percent per volt or 0.5 ohm, whichever is greater.

Capacitance - The capacitance between terminal \#1 and \#3 with terminal \#2 "floating" is approximately 2 to 3 pF at 1 KHz .
The capacitance between terminal \#1 (grounded to bushing) and terminal \#3 (shaft in extreme clockwise position) is approximately 10 to 12 pF at 1 KHz .
The capacitance between all terminals shorted together and the bushing is approximately 15 to 20 pF at 1 KHz .
In all cases capacitance indicated is for resistor only and does not include capacitance of measuring lead wires on test fixtures.

## Operational

Load life - 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$ ( 1.5 hour "ON", 0.5 hour "OFF").
Rotational life - 10 percent maximum change in total resistance as a result of a $1,000,000$ cycle life test without load.

## Mechanical

Slip clutch - The single section Type EJ is available with a slip clutch as Type EJC that prevents damage to the variable resistor when the shaft is rotated past the end stops. Slip torque is $2 \pm 1$ inch-pounds ( $2,31 \pm 1,15 \mathrm{kgf}-\mathrm{cm}$ ).
Shafts - Diameter of shafts .250 inch ( $6,35 \mathrm{~mm}$ ). Minimum length .375 inch ( $9,52 \mathrm{~mm}$ ). Maximum length 6.000 inches ( $152,40 \mathrm{~mm}$ ). Preferred shaft lengths and endings are shown in the table below.

> PREFERRED SHAFT LENGTHS For Types EJ, EJD and EJC

Plain Round -

| Inches | .500 | .625 | .750 | .875 ■ | 2.000 ■ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 12,70 | 15,88 | 19,05 | 22,23 | 50,80 |

Screwdriver Slotted -

| Inches | .500 | .625 | .750 | .875 -1 |
| :---: | :---: | :---: | :---: | :---: |
| mm | 12,70 | 15,88 | 19,05 | 22,23 |

$\square$ Only these lengths and endings are available for Type EJC.
Other lengths available in $1 / 64$ inch ( $0,40 \mathrm{~mm}$ ) increments. All shaft lengths are measured from the mounting face of the resistor to the free end of the shaft.
Bushings - Plain bushings only. All bushings have a 32 -NEF-2A thread and are .375 inch $(9,52 \mathrm{~mm})$ in diameter. Length .250 inch ( $6,35 \mathrm{~mm}$ ), .375 inch ( 9,52 mm ) or .500 inch ( $12,70 \mathrm{~mm}$ ), measured from the mounting surface of the bushing.
Hardware - Resistors are normally supplied with one mounting nut M-2786 and one internal tooth lock washer M-2898. Unless otherwise specified, all hardware shipped in bulk.
Locating lugs - Two locating lugs are provided so resistors may be indexed with respect to the surface on which they are mounted. Four lug options available. Lug option 1 standard. See dimensions on following pages.
Turning torque $-\mathrm{At}+25^{\circ} \mathrm{C}$ minimum torque 1 inch-ounce $(0,07 \mathrm{kgf}-\mathrm{cm})$. Maximum torque as follows:

Single -6 inch-ounces ( $0,43 \mathrm{kgf}-\mathrm{cm}$ )
Dual - 9 inch-ounces ( $0,65 \mathrm{kgf}-\mathrm{cm}$ )
Stop torque - 12 inch-pounds ( $13,82 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Rotation - Mechanical $312^{\circ} \pm 3^{\circ}$. Electrical $292^{\circ}$ nominal.
Backlash - Maximum backlash: single resistors $\pm 1 \cdot 1 / 2^{\circ}$, dual resistors $\pm 3^{\circ}$.
Construction - Materials are corrosion resistant and essentially non-magnetic; enclosure is dust and splash resistant; terminals are treated for easy soldering.
Marking - Allen-Bradley part number and nominal total resistance are marked in two lines. Other marking possible, limited to maximum of 13 characters in each of two lines. A-B monogram plus "Type EJ" always included.

## Environmental

Vibration -2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 204, condition "C" of MIL-STD-202.)
Shock - 2 percent maximum change in total resistance. 5 percent maximum change in resistance setting. (Tested per method 213, condition "I" of MIL-STD-202.)
Moisture resistance - 10 percent maximum change in total resistance. (Method 106 of MIL-STD. 202.)

Corrosion resistance - Materials show no corrosion after a 200 hour salt spray test. (Method 101 of MIL-STD-202.)
Effect of soldering -2 percent maximum change in total resistance as a result of immersing the terminals in $+350^{\circ} \mathrm{C}$ solder to within 0.125 inch $(3,18 \mathrm{~mm})$ of the resistor body for 5 seconds.
Temperature cycling -3 percent maximum change in total resistance as a result of the temperature cycling test (five cycles $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ ).
Low temperature operation -3 percent maximum change in total resistance as a result of the low temperature operation test ( $-55^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load).
Low temperature storage -2 percent maximum change in total resistance as a result of the storage test ( 24 hours at $-55^{\circ} \mathrm{C}$ ).
Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See table below.

| Nominal <br> Resistance | Degrees Celsius - "U" Linear Taper |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $-55^{\circ}$ | $-25^{\circ}$ | $0^{\circ}$ | $+\mathbf{2 5}$ | $+55^{\circ}$ | $+\mathbf{8 5}$ | $+\mathbf{1 2 0 ^ { \circ }}$ |
| $\mathbf{1 0 0}$ Ohms | +4.5 | +2.5 | +1.5 | 0 | $\pm 1.0$ | $\pm 1.5$ | +3.5 |
| $\mathbf{1 , 0 0 0}$ Ohms | +5.5 | +3.0 | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | +4.5 |
| $\mathbf{1 0 , 0 0 0}$ Ohms | +7.0 | +3.5 | +2.0 | 0 | $\pm 1.0$ | $\pm 2.5$ | +5.5 |
| $\mathbf{1 0 0 , 0 0 0}$ Ohms | +8.0 | +4.0 | +2.0 | 0 | $\pm 1.5$ | $\pm 3.0$ | +6.0 |
| $\mathbf{1 ~ M e g o h m ~}$ | +10.0 | +5.0 | +2.5 | 0 | $\pm 1.5$ | $\pm 3.5$ | +7.5 |

For " S ", " A ", " B " and " DB " tapers multiply percentage figures shown above by 1.25 .

## Ordering information

1. Type (EJA, EJD or EJC).
2. Taper (each section).
3. Total resistance (each section).
4. Total resistance tolerance (each section).
5. Bushing length.
6. Shaft ending.
7. Shaft length.
8. Locating lug option.
9. Mounting hardware.
10. Your part number,
11. Marking required.
12. Remarks.

TAPERS


## Additional ratings

Multiple resistor power derating - The permissible power dissipation in one resistor element is a function of the power dissipation in the other resistor element. Maximum continuous power rating in watts with entire resistor element in the circuit are as follows:
$\left(\frac{W_{1}}{2.25}\right)^{2}+\left(\frac{W_{2}}{1.8}\right)^{2}=1$ (Maximum)
Where $W_{1}=$ Watts in entire first or panel resistor element.
$W_{2}=$ Watts in entire second or rear resistor element.
WATTS

| $W_{1}$ | 2.25 | 2.00 | 1.75 | 1.50 | 1.25 | 1.00 | 0.75 | 0.50 | 0.25 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $W_{2}$ | 0 | 0.83 | 1.13 | 1.34 | 1.49 | 1.61 | 1.70 | 1.76 | 1.79 | 1.80 |

END RESISTANCE

| TAPER | MINIMUM <br> RESISTANCE <br> BETWEEN <br> TERMINALS <br> 1 and 2 | MINIMUM <br> RESISTANCE <br> BETWEEN <br> TERMINALS <br> 2 and 3 |
| :---: | :---: | :---: |
| U \& S | $\square$ | $\square$ |
| A | $\square$ | $\square$ |
| B | $\square$ | $\square$ |
| DB | $\square$ | $\square$ |

-1. "Less than . $004 \%$ of total resistance," or "less than 4 ohms" whichever is greater.

- "Less than $1 \%$ of total resistance," or "less than 4 ohms" whichever is greater.
E Less than 4 ohms.

DIMENSIONS


Derating with respect to rotation - rheostat application

| Percent <br> Rotation | Multiply <br> Wattage <br> Rating By | Percent <br> Rotation | Multiply <br> Wattage <br> Rating By |
| :---: | :---: | :---: | :---: |
| 100 | 1.00 | 40 | 0.81 |
| 90 | 0.99 | 30 | 0.68 |
| 80 | 0.98 | 20 | 0.49 |
| 70 | 0.96 | 10 | 0.23 |
| 60 | 0.93 | 0 | 0.11 |
| 50 | 0.89 |  |  |

Locating lug options

## $.531 \pm .005$

$(13,49 \pm 0,13)$


Option No. 1 tandard Locating Lug (Used Unless Otherwise Specified)


Option No. $2 \quad$ Option No. 3

Option No. 4 - No Locating Lugs


Resistor connections


Mounting hardware


Lock Washer M-2898


Basic dimensions in inches.
Dimensions shown in PARENTHESES are in millimeters.

TOLERANCES
Dimensional Tolerance $\pm .016(0,40)$
Angular Tolerance $\pm 5^{\circ}$ Except as specified.

EXPLANATION OF PART NUMBERS



## SPECIFICATIONS

## General

Temperature range $--55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below. Other values available.

OHMS

| 100 | 1 K | 10 K | 100 K | 1 Meg. |
| :--- | ---: | ---: | ---: | ---: |
| 200 | 2 K | 20 K | 200 K | 2 Meg. |
| 250 | 2.5 K | 25 K | 250 K | 2.5 Meg. |
| 500 | 5 K | 50 K | 500 K | 5 Meg. |

Total resistance tolerances $- \pm 20 \%$ or $\pm 10 \%$.
Tapers - Available in following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| U | 100 Ohms to 5.0 Megohms |
| A, B, S, \& DB | 500 Ohms to 2.5 Megohms |

See chart on following pages for explanation of tapers. Special tapers, where practical, can be supplied.
End resistance - See chart on following pages.
Attenuators - See Allen-Bradley Publication EC5930-2.1

## Electrical

Power - Maximum power rating for " $U$ " linear tapers at $+70^{\circ} \mathrm{C}$ with both elements in the circuit are as follows:

|  | WATTS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Front Resistor | 0.5 | 0.46 | 0.4 | 0.35 | 0.3 | 0.2 | 0 |  |
| Rear Resistor | 0 | 0.2 | 0.3 | 0.35 | 0.4 | 0.46 | 0.5 |  |

## ${ }^{\text {rpoo }} G D$ Hot-Molded Panel Potentiometers

$1 / 2$ (0.50) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 0.5 Watt ( $70^{\circ} \mathrm{C}$ )

## 100 Ohms to 5.0 Megohms

## FEATURES

- Linear and Non-Linear Tapers
- Attenuators
- Immersion Sealed
- Dual Section

Front resistor is adjacent to the actuator. Voltage rating must not be exceeded.
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ to zero at $+120^{\circ} \mathrm{C}$. Derate power 50 percent for non-metallic mounting and for resistors with "A", "B", " S ", and "DB" tapers. For rheostat applications, derate power directly with shaft or actuator position.
Voltage - 350 volts niaximum working voltage (RMS or DC), or as determined by $E_{\text {max. }}=\sqrt{P R}$, whichever is less (at sea level).
Dielectric withstanding voltage - Will withstand a one second test of 750 volts (RMS or DC) at sea level or 350 volts (RMS or DC) at 3.4 inches $(86,36 \mathrm{~mm})$ mercury.
Insulation resistance - 1000 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.
Voltage characteristic -0.005 percent per volt or 0.5 ohm , whichever is greater.

## Operational

Load life - 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$ ( 1.5 hour "ON," 0.5 hour "OFF").
Rotational life - 10 percent maximum change in total resistance as a result of a 50,000 cycle life test without load.

## Mechanical

Shafts - Diameter of shafts .125 inch ( $3,18 \mathrm{~mm}$ ). Minimum length . 125 inch ( $3,18 \mathrm{~mm}$ ). Maximum length 2.500 inches ( $63,50 \mathrm{~mm}$ ) with plain,
(Mechanical specifications continued on next page.)
screwdriver slotted or flatted shaft endings. Preferred shaft lengths and endings are listed in the table below.

PREFERRED SHAFT LENGTHS

|  | Plain Round |  | Screwdriver Slotted |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inches | . 500 | . 625 | . 375 | . 438 | . 500 | . 625 | . 750 | . 875 |
| mm | 12,70 | 15,88 | 9,52 | 11,11 | 12,70 | 15,88 | 19,05 | 22,22 |

Other lengths available in $1 / 64$ inch ( $0,40 \mathrm{~mm}$ ) increments. All shaft lengths are measured from the mounting face of the resistor to the free end of the shaft. The shaft can be flush with the bushing end or recessed on resistors with plain bushings.
Bushings - All bushings have a 32 -NEF-2A thread and are .250 inch ( $6,35 \mathrm{~mm}$ ) in diameter. Bushing lengths and types are shown in the table below.

|  |  |  |  | Panel <br> Watertight <br> Plain |  | Locking |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | | Panel <br> Watertight <br> Plain |  |
| :---: | :---: |
| Inch |  | mm

After lock nuts on locking bushing are tightened with a torque of 8 inch-pounds ( $9,22 \mathrm{kgf-cm}$ ) shafts will not turn with torques up to 20 inch-ounces ( $1,44 \mathrm{kgf}$ cm ).
Hardware - Resistors are normally supplied with one mounting nut, M-4721, and one internal tooth lock washer, M-4748. Resistors with shaft lock bushings are supplied with one lock nut, M-4761, in addition to the above. Unless otherwise specified, all hardware shipped in bulk.
Locating lugs - Locating lug options can be provided so resistors may be indexed with respect to the surface on which they are mounted. See dimensions.
Turning torque -0.5 to 4.5 inch-ounces $(0,036$ to $0,32 \mathrm{kgf}-\mathrm{cm}$ ) at $\cdot 25^{\circ} \mathrm{C}$ and 13 inch-ounces ( 0,94 $\mathrm{kgf}-\mathrm{cm}$ ) maximum at $-55^{\circ} \mathrm{C}$.
Stop torque -2 inch-pounds ( $2,31 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Rotation - Mechanical rotation is $295^{\circ} \pm 5^{\circ}$. Electrical rotation is $270^{\circ}$ nominal.
Backlash - $3^{\circ}$ maximum.
Construction - Materials are corrosion resistant and essentially non-magnetic; terminals are treated for easy soldering.
The resistor incorporates an internal "O" ring between the shaft and bushing. External surfaces are given special treatment so that the entire resistor is immersion sealed or "watertight."
A "panel watertight" bushing is available. This bushing is provided with an external "O" ring in addition to the internal " O " ring supplied as standard.

Immersion - No continuous stream of bubbles (4 or more) emanating from the resistor as a result of the immersion test ( 1 minute in water at $+85^{\circ} \mathrm{C}$ ).
Weight - The exact weight of individual resistors depends on the precise mechanical specifications involved. An approximate net weight of typical resistor including hardware normally specified would be 0.24 ounce ( $6,8 \mathrm{gms}$ ).
Marking - Allen-Bradley part number and nominal total resistance marked in two lines. Other marking possible, limited to maximum of 13 characters in each of two lines. A-B monogram plus "Type GD" always included.

## Environmental

Vibration - 2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 204, condition "C" of MIL-STD-202.)
Shock -2 percent maximum change in total resistance. 5 percent maximum change in resistance setting. (Tested per method 213, condition "I" of MIL-STD-202.)
Moisture resistance - 10 percent maximum change in total resistance. (Method 106 of MIL-STD202.)

Corrosion resistance - Materials show no corrosion after a 200 hour salt spray test. (Method 101 of MIL-STD-202.)
Effect of soldering - 2 percent maximum change in total resistance as a result of immersing the terminals in $+350^{\circ} \mathrm{C}$ solder to within .062 inch ( 1,57 mm ) of the resistor body for 5 seconds.
Temperature cycling - 3 percent maximum change in total resistance as a result of the temperature cycling test (five cycles $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ ).
Low temperature operation - 2 percent maximum change in total resistance as a result of the low temperature operation test ( $-55^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load).
Low temperature storage -2 percent maximum change in total resistance as a result of the storage test ( 24 hours at $-63^{\circ} \mathrm{C}$ ).
Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See table below.

| Nominal <br> Resistance | Degrees Celsius - " $\mathrm{U}^{\prime \prime}$ Linear Taper |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $-\mathbf{5 5}$ | $-\mathbf{2 5}$ | $\mathbf{0}^{\circ}$ | $+\mathbf{2 5}^{\circ}$ | $+\mathbf{5 5 ^ { \circ }}$ | $+\mathbf{8 5}^{\circ}$ | $+\mathbf{1 2 0} \mathbf{0}^{\circ}$ |
| $\mathbf{1 0 0}$ Ohms | +4.5 | +2.5 | +1.5 | 0 | $\pm 1.0$ | $\pm 1.5$ | +3.5 |
| $\mathbf{1 , 0 0 0}$ Ohms | +5.5 | +3.0 | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | +4.5 |
| $\mathbf{1 0 , 0 0 0}$ Ohms | +7.0 | +3.5 | +2.0 | 0 | $\pm 1.0$ | $\pm 2.5$ | +5.5 |
| $\mathbf{1 0 0 , 0 0 0}$ Ohms | +8.0 | +4.0 | +2.0 | 0 | $\pm 1.5$ | $\pm 3.0$ | +6.0 |
| $\mathbf{1 ~ M e g o h m ~}$ | +10.0 | +5.0 | +2.5 | 0 | $\pm 1.5$ | $\pm 3.5$ | +7.5 |

For " S ", " A ", " B " and " DB " tapers multiply percentage figures shown above by 1.25 .

TAPERS


END RESISTANCE

| TAPER | MINIMUM RESISTANCE BETWEEN TERMINALS 1 and 2 | MINIMUM RESISTANCE BETWEEN TERMINALS 2 and 3 |
| :---: | :---: | :---: |
| U \& S | [ | 国 |
| A | $\square$ | $\underline{\square}$ |
| B | 8 | 回 |
| DB | $\square$ | ${ }^{3}$ |

[17 "Less than . $004 \%$ of total resistance," or "less than 10 ohms" whichever is greater.
(2) "Less than $1 \%$ of total resistance," or "less than 10 ohms" whichever is greater.
Less than 10 ohms.

## Ordering information

1. Type (GD).
2. Taper.
$\square$
3. Total resistance.
4. Total resistance tolerance.
5. Bushing type.

- When specifying attenuators specify attenuator type, characteristic impedance, tolerance on characteristic impedance and under remarks specify standard or limited attenuation.


## DIMENSIONS

## Standard resistor



Locking Bushing
6. Bushing length.
7. Shaft ending.
8. Shaft length.
9. Locating lug option.
10. Mounting hardware.
11. Your part number.
12. Marking required.
13. Remarks.

Panel watertight resistor


Locking Bushing


Standard Bushing Lengths

$$
.375-.500
$$

$$
\frac{.375}{(9.52)-(12.70)}
$$

Maximum Mounting Panel Thickness when used with standard hardware.
used with standard hardw
$.062-188$
$(1,57)-(4,76)$
Shaft must extend
$.016(0,40)$ beyond bushing.

## Locating lugs



Mounting hardware



Resistor connections


## EXPLANATION OF PART NUMBERS



## Cermet Panel Potentiometers

### 1.0 Watt $\left(70^{\circ} \mathrm{C}\right)$

3/8 (0.375) Inch ( $9,52 \mathrm{~mm}$ ) Diameter 50 Ohms to 1.0 Megohm

## FEATURES

- TCR $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Maximum
- Cermet
- 2 Types

Solder Terminals or Pin Terminals

- 7 Locating Lug Options
- Immersion Sealed
- $\pm 10 \%$ Tolerance


## SPECIFICATIONS

## General

Temperature range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below.

OHMS

| 50 | 500 | 5 K | 50 K | 500 K |
| ---: | ---: | ---: | ---: | ---: |
| 75 | 750 | 7.5 K | 75 K | 750 K |
| 100 | 1 K | 10 K | 100 K | 1 Meg. |
| 200 | 2 K | 20 K | 200 K |  |
| 250 | 2.5 K | 25 K | 250 K |  |

Total resistance tolerances $- \pm 10$ percent standard, $\pm 5$ percent available on request.
Taper - (Resistance-rotation characteristics) - " $U$ " linear taper.
End resistance - Less than 5 ohms at both ends.

## Electrical

Power -1 watt maximum at $+70^{\circ} \mathrm{C}$ provided voltage rating is not exceeded.
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ to zero at $+150^{\circ} \mathrm{C}$. Derate power 50 percent for non-metallic mounting. For rheostat applications, derate power directly with shaft or actuator position.

Voltage - 300 volts maximum working voltage (RMS or DC), or as determined by $E_{\text {max. }}=\sqrt{\mathrm{PR}}$, whichever is less (at sea level).
Dielectric withstanding voltage - Will withstand a one second test of 750 volts RMS at sea level, or 350 volts RMS at 3.4 inches $(86,36 \mathrm{~mm}$ ) mercury. Insulation resistance - 100 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.

## Operational

Contact resistance variation - Less than 3 percent of nominal resistance value.
Load life -5 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$ ( 1.5 hour "ON," 0.5 hour "OFF").
Rotational life -10 percent maximum change in total resistance as a result of 25,000 cycles under load.

## Mechanical

Construction - Materials are essentially nonmagnetic. Terminals are treated for easy soldering. The resistor incorporates an internal "O" ring between the shaft and bushing. External surfaces are given special treatment so that the entire unit is immersion sealed.
Shafts - Diameter of shafts .125 inch ( $3,18 \mathrm{~mm}$ ). Minimum length .188 inch ( $4,76 \mathrm{~mm}$ ). Maximum length 2.500 inches ( $63,50 \mathrm{~mm}$ ) with plain, slotted or flatted shaft endings described on page 134. Preferred shaft lengths are listed in the table below.

| PREFERRED SHAFT LENGTHS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| With Plain Round or Slotted Endings       <br> Inch .312 .375 .438 .500 .625 .750 <br> mm 7,94 9,52 11,11 12,70 15,88 19,05 | 22,22 |  |  |  |  |  |

Other shaft lengths available in $1 / 64$ inch $(0,40 \mathrm{~mm})$ increments. All shaft lengths are measured from the mounting face of the resistor to the free end of the shaft.

Bushings - All bushings have a 32 -NEF-2A thread and are .250 inch ( $6,35 \mathrm{~mm}$ ) in diameter. Preferred bushing type and lengths are shown in the table below.

| BUSHING TYPE | BUSHING LENGTH |  |
| :---: | :---: | :---: |
|  | Inch | mm |
| Plain | .250 | 6,35 |
|  | .375 | 9,52 |

All bushing lengths are measured from the mounting face to the end of the bushing.
Turning torque -0.5 to 6 inch-ounces $(0,036$ to $0,44 \mathrm{kgf}-\mathrm{cm})$ at $+25^{\circ} \mathrm{C}$.
Stop torque -3 inch-pounds ( $3,46 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Rotation - $280^{\circ} \pm 5^{\circ}$.
Backlash - Maximum of 3 degrees.
Weight - Approximately 5 grams.
Locating lugs - Locating lugs can be provided so the resistor may be indexed with respect to the surface on which it is mounted. Seven different locating lug options are available. Double flatted bushings and lug adapters accomplish this function. All lug adapters shipped in bulk. Unless otherwise specified, resistors are supplied in accordance with Option No. 2. See dimensions on page 134.

Hardware - Standard hardware is one mounting nut M-4721 and one internal tooth lock washer M-4748. Unless otherwise specified, all hardware shipped in bulk.
Marking - Allen-Bradley part number and nominal total resistance are marked in two lines. Other marking possible, limited to a maximum of 13 characters in each of two lines. A-B monogram plus "Type SP" always included.

## Environmental

Vibration - 2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 204, condition "C" of MIL-STD-202).
Shock - 2 percent maximum change in total resistance. 5 percent maximum change in resistance setting. (Tested per method 213, condition "I" of MIL-STD-202.)
Moisture resistance -2 percent maximum change in total resistance. (Method 106 of MIL-STD-202.) Effect of soldering - 1 percent maximum change in total resistance as a result of immersing the terminals in $350^{\circ} \mathrm{C}$ solder to within 0.062 inch $(1,59 \mathrm{~mm})$ of the resistor for $5 \pm 1 / 2$ seconds.
Temperature cycling - 3 percent maximum change in total resistance as a result of the temperature cycling test. (Five cycles at $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ).
High temperature exposure -4 percent maximum change in total resistance as a result of the high temperature exposure test. $\left(+150^{\circ} \mathrm{C}\right.$ for 1000 hours without load.)
Low temperature operation - 2 percent maximum change in total resistance as a result of the low temperature operation test. ( $-65^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load.)
Temperature coefficient - Total resistance change less than $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. (Tested per method 304 of MIL-STD-202.)
Immersion - No continuous stream of bubbles (4 or more) emanating from the resistor as a result of the immersion test ( 1 minute in water at $+85^{\circ} \mathrm{C}$ ).

## Ordering information

1. Type (SPS or SPP).
2. Total resistance value.
3. Tolerance on total resistance.
4. Bushing length in inches or millimeters.
5. Shaft ending (Plain, Slotted or Flatted).
6. Shaft length from mounting surface in inches or millimeters.
7. Locating lug option ( $1,2,3,4,5,6$ or 7 ).
8. Mounting hardware (A-B standard or other).
9. Part number you have assigned.
10. Marking required on the part.
11. Remarks.

## ${ }^{\text {trpe }} \mathbf{S P}$ <br> DIMENSIONS



Type SPP plain bushing pin terminals

Shaft endings


## Adapter plates



## Hardware




B-39340



Option No. 5 \& 7
B-39342

## Resistor connections

Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters.

## TOLERANCES

Dimensional tolerance
$\pm .016(0,40)$
Angular tolerance $\pm 5^{\circ}$
Except as specified.
NOT TO SCALE

## Cermet Panel Potentiometers

## EXPLANATION OF PART NUMBERS



Bushing Type and Length
G - Plain 250 inch ( $6,35 \mathrm{~mm}$ ) long
$\mathbf{N}-\underset{(9,52 \mathrm{~mm}) \text { long }}{\text { Plain } .375 \text { inch }}$
$\mathbf{N}-\underset{(9,52 \mathrm{~mm}) \text { long }}{\text { Plain } .375 \text { inch }}$


Shaft Ending
S - Slotted
P - Plain Round
F - Flatted
Plo
Total Resistance Value
First two digits are significant figures and the third indicates the number of zeros following the first two digits -
Examples: $101=100$ Ohms

$$
501=500 \mathrm{Ohms}
$$

$$
254=250 \mathrm{~K}
$$

Shaft Length
Measured from mounting surface in inches and sixty-fourths.
Examples:
$056=7 / 8$ or .875 inch

$$
(22,22 \mathrm{~mm})
$$

$200=2.000$ inches
$(50,80 \mathrm{~mm})$

CAUTION: Part number format does not allow for exclusion of invalid mechanical and/or electrical combinations. Check parameter limits in preceding text.

Type N D Hot-Molded Panel Potentiometers

1/2 (0.50) Inch (12,70 mm) Diameter 0.5 Watt ( $70^{\circ} \mathrm{C}$ )<br>\section*{100 Ohms to 5.0 Megohms}<br>\section*{FEATURES}

- Linear and Non-Linear Tapers
- Radial Terminals
- Switches Available


## SPECIFICATIONS

## General

Temperature range - Variable resistor $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$. Switch $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below. Other values available.

OHMS

| 100 | 1 K | 10 K | 100 K | 1.0 Meg. |
| :--- | ---: | ---: | :--- | :--- |
| 200 | 2 K | 20 K | 200 K | 2.0 Meg. |
| 220 | 2.2 K | 22 K | 220 K | 2.2 Meg. |
| 250 | 2.5 K | 25 K | 250 K | 2.5 Meg. |
| 470 | 4.7 K | 47 K | 470 K | 4.7 Meg. |
| 500 | 5 K | 50 K | 500 K | 5.0 Meg. |

Total resistance tolerances - $\pm 20 \%$ or $\pm 10 \%$.
Tapers - Available in following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| U | 100 Ohms to 5.0 Megohms |
| $\mathrm{A}, \mathrm{B}, \mathrm{S}, \&$ DB | 500 Ohms to 2.5 Megohms |

See chart on following pages for explanation of tapers.
Special tapers, where practical, can be supplied.
End resistance - See chart on following pages.
Switches - Two types of single pole, single throw switches are available. One turns "ON" at start of clockwise shaft rotation, the other at the start of counterclockwise shaft rotation. The switch reduces effective electrical rotation to $248^{\circ}$ nominal.
Switch rating for resistive loads is 1.0 ampere 125 volt 60 Hertz.
Switches can be operated 10,000 cycles at full rating.

## Electrical

Power -0.5 watt maximum at $+70^{\circ} \mathrm{C}$ for " U " linear taper provided voltage rating is not exceeded.
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ to zero at $+120^{\circ} \mathrm{C}$. Derate power 50 percent for non-metallic mounting and for resistors with "A", "B", "S", and "DB" tapers. For rheostat applications, derate power directly with shaft or actuator position.
Voltage -350 volts maximum working voltage (RMS or DC), or as determined by $E_{\text {max }}=\sqrt{P R}$, whichever is less (at sea level).
Dielectric withstanding voltage - Maximum continuous voltage 350 volts (RMS or DC) at sea level. Will withstand a one second test of 750 volts (RMS) at sea level or 350 volts (RMS) at 3.4 inches $(86,36 \mathrm{~mm})$ mercury.
Insulation resistance - 1000 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.

## Operational

Load life - 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$ ( 1.5 hour "ON," 0.5 hour "OFF").
Rotational life - 10 percent maximum change in total resistance as a result of a 50,000 cycle life test without load (variable resistor only).

## Mechanical

Shafts - Diameter of shafts .125 inch ( $3,18 \mathrm{~mm}$ ). Minimum length .125 inch ( $3,18 \mathrm{~mm}$ ). Maximum length 2.500 inches $(63,50 \mathrm{~mm}$ ) with plain, screwdriver slotted or flatted shaft endings. Preferred shaft lengths and endings are listed in the following table.

## PREFERRED SHAFT LENGTHS

|  | Plain <br> Round |  |  |  |  |  | Screwdriver Slotted |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inches | .500 | .625 | .375 | .438 | 500 | .625 | .750 | .875 |  |  |  |
| mm | 12,70 | 15,88 | 9,52 | 11,11 | 12,70 | 15,88 | 19,05 | 22,22 |  |  |  |

Other lengths available in $1 / 64$ inch ( $0,40 \mathrm{~mm}$ ) increments. All shaft lengths are measured from the mounting face of the resistor to the free end of the shaft. The shaft can be flush with the bushing end or recessed on resistors with plain bushings.
Bushings - All bushings have a 32-NEF-2A thread and are .250 inch ( $6,35 \mathrm{~mm}$ ) in diameter. Bushing lengths and types are shown in the table below.

|  |  |  |  | Panel <br> Patertight <br> Plain |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plain |  |  |  |  |  |

After lock nuts on locking bushing are tightened with a torque of 8 inch-pounds ( $9,22 \mathrm{kgf}-\mathrm{cm}$ ) shafts will not turn with torques up to 20 inch-ounces ( $1,44 \mathrm{~kg} \cdot \mathrm{~cm}$ ).
Hardware - Resistors are normally supplied with one mounting nut, M-4721, and one internal tooth lock washer, M-4748. Resistors with shaft lock bushings are supplied with one lock nut, M-4761, in addition to the above. Unless otherwise specified, all hardware shipped in bulk.
Locating lugs - Locating lugs can be supplied to prevent turning or movement with respect to the surface upon which the resistor is mounted. Four different locating lug options are available. See DIMENSIONS.
Turning torque - The torque required to rotate the shaft is 0.5 inch-ounce ( $0,036 \mathrm{kgf-cm}$ ) minimum, 3 inch-ounces ( $0,22 \mathrm{kgf}-\mathrm{cm}$ ) maximum at $+25^{\circ} \mathrm{C}$ ambient temperature, and 13 inch-ounces ( $0,94 \mathrm{kgf}$ cm ) maximum at $-55^{\circ} \mathrm{C}$ ambient.
Maximum additional torque required to operate the switch is 1 to 6 inch-ounces ( 0,072 to $0,432 \mathrm{kgf}-\mathrm{cm}$ ).
Stop torque -2 inch-pounds ( $2,31 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Rotation - Mechanical rotation for resistors with or without switch is $295^{\circ} \pm 5^{\circ}$.
Electrical rotation is $270^{\circ}$ nominal without switch and $248^{\circ}$ nominal with switch.

Construction - Materials are corrosion resistant and essentially non-magnetic, terminals are treated for easy soldering; enclosure is dust and splash resistant.
Immersion-sealed types, commonly referred to as "watertight" are optional. These immersion-sealed types incorporate an internal " O " ring seal between the shaft and bushing. External surfaces are given special treatment so that the entire resistor is immersion-sealed so that no continuous stream of bubbles ( 4 or more) emanates from the resistor as a result of the immersion test ( 1 minute in water at $+85^{\circ} \mathrm{C}$ ).
A panel-shaft "watertight" bushing is also optional. This bushing is provided with an external " O " ring in addition to the features of the immersion-sealed type.
Weight - The exact weight of individual resistors depends on the precise mechanical specifications involved. For example a Type WR resistor with 0.250 inch $(6,35 \mathrm{~mm})$ bushing and 0.875 inch $(22,22 \mathrm{~mm})$ shaft will weigh approximately 0.27 ounces ( 7,57 grams).
Marking - Allen-Bradley part number and nominal total resistance marked in two lines. Other marking possible, limited to maximum of 13 characters in each of two lines. A-B monogram plus "Type WR" always included.

## Environmental

Vibration -2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 204, condition "C" of MIL-STD-202.)
Shock -2 percent maximum change in total resistance. 5 percent maximum change in resistance setting. (Tested per method 213, condition "I" of MIL-STD-202.)
Humidity/moisture resisfance - All resistors exhibit less than 10 percent total resistance change when tested per MIL-STD-202, Method 103, Condition " $B$ ". Sealed resistors exhibit less than 10 percent total resistance change when tested per MIL-STD-202, Method 106.
Corrosion resistance - Materials show no corrosion after a 200 hour salt spray test. (Method 101 of MIL-STD-202.)
Eflect of soldering -2 percent maximum change in total resistance as a result of immersing the terminals in $+350^{\circ} \mathrm{C}$ solder to within 0.125 inch $(3,18 \mathrm{~mm})$ of the resistor body for 5 seconds.
Temperature cycling - 3 percent maximum change in total resistance as a result of the temperature cycling test (five cycles $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ for resistor and five cycles at $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ for resistor with switch).

## Environmental

Low temperature operation - 2 percent maximum change in total resistance as a result of the low temperature operation test ( $-55^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load).
Low temperature storage - 2 percent maximum change in total resistance as a result of the storage test ( 24 hours at $-63^{\circ} \mathrm{C}$ ).
Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See table to right.
For " S ", " A ", " B " and " $D B$ " tapers multiply percentage figures shown by 1.25 .

## Taper data

TAPERS


END RESISTANCE

|  | MINIMUM | MINIMUM |
| :---: | :---: | :---: |
| TAPER | RESISTANCE | RESISTANCE |
|  | BETWEEN | BETWEEN |
|  | TERMINALS | TERMINALS |
| 1 and 2 | 2 and 3 |  |
| U \& S | n | a |
| A | n | a |
| B | a | a |
| DB | B | $\mathbf{a}$ |

II "Less than . $004 \%$ of total resistance," or "less than 10 ohms" whichever is greater.
2. "Less than 1\% of total resistance," or "less than 10 ohms" whichever is greater.
3 Less than 10 ohms.

## Ordering information

1. Type (WRA, WRH or WRS)
2. Taper.
3. Total resistance.
4. Tolerance.
5. Bushing type.
6. Bushing length.
7. Shaft ending.
8. Shaft length.
9. Locating lug option.
10. Mounting hardware.
11. Your part number.
12. Marking required.
13. Remarks.

Standard potentiometer


## Locking Bushing



## Panel watertight potentiometer

Plain Bushing


Standard potentiometer with switch


## Panel watertight potentiometer with switch

Plain Bushing


## bex WR

## DIMENSIONS

## Shaft endings

Flatted
Flat will extend to within $062 / 1.57 /$ of .250 mounting bushing where shaft length will


Flat opposite
Movable Contact

Screwdriver Slotted


Screwdriver Slot in line with
Movable Contact

Lug options
Standard Potentiometer


Panel Watertight Potentiometer


Mounting
Standard Potentiometer


Panel Watertight Potentiometer


Hardware


Lock Washer M-4748

Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters.

## TOLERANCES

Dimensional tolerance $\pm .016(0,40)$
Angular
tolerance $\pm 5^{\circ}$
Except as specified.
NOT TO SCALE

Potentiometer Connections


NOTE: Part number format allows development of some part numbers which cannot be manufactured. (Example: WRA2N400P101AA which has an invalid shaft length and invalid resistance value for an " A " taper.) Check parameter limits in preceding text, when developing a part number.

Combinations which are valid and do not fit into a part number, (Examples: Special tapers, special shafts, etc.) will be assigned a special part number by the factory. Refer to "Ordering Information", in the preceding text, for the required data for the assignment of a special part number by the factory.

| Basic Type <br> WRA - Basic Type WR. <br> WRS - With switch actuated at start of clockwise rotation. <br> WRH - With switch actuated at start of counterclockwise rotation. | Locating <br> l.ug <br> Option <br> $\begin{array}{ll}\frac{1}{2} & \begin{array}{l}\text { Not available } \\ \text { unless panel } \\ \text { watertight bushing }\end{array} \\ \frac{3}{4} & \begin{array}{l}\text { is used }\end{array}\end{array}$ | Total Resistance Value First two digits are significant figures and the third indicates the number of zeros following the first two digits - <br> Examples: <br> $101=100$ Ohms $501=500$ Ohms <br> $255=2.5$ Megohms |
| :---: | :---: | :---: |
|  |  |  |
| Bushing Type and Length <br> G - Plain - Dust and Splash Resistant .250 inch ( $6,35 \mathrm{~mm}$ ) long <br> N - Plain - Dust and Splash Resistant .375 inch $(9,52 \mathrm{~mm})$ long <br> M - Locking . - Dust and Splash Resistant .375 inch $(9,52 \mathrm{~mm})$ long <br> L - Locking . - Dust and Splash Resistant .500 inch ( $12,70 \mathrm{~mm}$ ) long <br> A - Plain - Immersion-sealed 250 inch $(6,35 \mathrm{~mm})$ long <br> B - Plain - Immersion sealed .375 inch ( 9.52 mm ) long <br> C - Locking - Immersion-sealed .375 inch $(9,52 \mathrm{~mm})$ lons <br> D - Locking - Immersion sealed .500 inch ( $12,70 \mathrm{~mm}$ ) long <br> T - Panel Watertight - Plain -Immersion-sealed 250 inch $(6,35 \mathrm{~mm})$ long | Shaft Length <br> Measured from mounting surface in inches and sixty-fourths <br> Example: <br> $032=32 / 64$ or .500 inch ( $12,70 \mathrm{~mm}$ ) <br> $200=2.000$ inches $(50,80 \mathrm{~mm})$ <br> $056=7 / 8$ or .875 inch $(22,22 \mathrm{~mm})$ <br> Preferred Shaft Lengths and Endings Plain Round <br> Screwdriver Slotted <br> Shaft Ending <br> S - Standard Slot <br> $\mathbf{P}$ - Plain Round <br> F - Standard Flat | Taper Type and <br> Total Resistance Tolerance <br> $\mathrm{U}-$ Linear ( U ),$\pm 10 \%$ <br> M - Linear (U),$\pm 20 \%$ <br> A - Clockwise Modified Logarithmic (A), $+10 \%$ <br> R - Clockwise Modified Logarithmic (A) $\pm 20 \%$ <br> B - Counterclockwise Modified Logarithmic (B), $\pm 10 \%$, <br> T - Counterclockwise Modified Logarithmic (B), $\pm 20 \%$ <br> D - Clockwise Exact Logarithmic (DB), $\pm 10 \%$ <br> K - Clockwise Exact Logarithmic (DB), $\pm 20 \%$, <br> $\mathrm{S}-$ Modified Linear (S), $\pm 10 \%$ <br> Y - Modified Linear (S), $\pm 20 \%$ |

MOD POT ${ }^{\circledR}$
Series $70,72,73$
Conductive Plastic (CP), Cermet and Hot-Molded Carbon Panel


Potentiometers
$5 / 8$ ( 0.625 ) Inch ( $15,88 \mathrm{~mm}$ ) Square 50 Ohms to 10.0 Megohms

## FEATURES

- Versatility
- Quadruple Controls
- Many Switch Options
- Linear and Non-Linear Tapers
- Attenuators


## SPECIFICATIONS

## General

Versatile Panel Potentiometer
The MOD POT* concept consists of standardized potentiometer modules that can be mixed and matched in over a billion combinations. Now, you can be far more imaginative with potentiometers because you can get special combinations with the ease of standards.
Allen-Bradley originated the modular potentiometer concept in response to requests from design engineers who wanted virtually unlimited variety in variable resistors for greatly increased design freedom.
MOD POT ${ }^{\text {* }}$ modules are $5 / 8$ inch square by about $1 / 2$ inch deep. This provides minimum center-to-center distance for compact panel mounting. You can gang resistance and switch modules in combinations of up to
four modules. Select from a whole family of resistive elements, resistive values and tolerances, tapers, shafts, bushings, lug options and more. You get a virtually unlimited number of design options.

The MOD POT* Family includes:
Series 70 - Metal Shaft - Metal Bushing.
Series 72 - Plastic Shaft - Plastic Bushing.
Series 73 - Metal Shaft - Metal Bushing molded into a Plastic Face Plate.

See Page 143 for possible basic combinations.

Unmatched Flexibility


The MOD POT* Potentiometer is available in single, dual, triple, and quadruple construction. This includes potentiometer, switch and vernier drive modules. The table below lists some of the options available for single
and multi-section controls. Because of the versatility of the MOD POT* Potentiometer, many other options are available. Momentary push switches may be used in place of push-pull switches in the listed combinations.


Single Unit


Dual Unit


Triple Unit


Quad Unit

|  | Section \#1 | Section \#2 | Section \#3 | Section \#4 | Combination 5 | Series |  |  | See <br> Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 70 | 72 | 73 |  |
| Single Unit | Potentiometer |  |  |  | 1A | A | A | A |  |
|  | Rotary Switch |  |  |  | 2 A | A | A | A | 4 |
|  | Push-Pull Switch |  |  |  | 3A | A | NA | A |  |
| Dual Unit | Potentiometer | Potentiometer |  |  | 4A | A | A | A |  |
|  |  | Rotary Switch |  |  | 5A | A | A | A | 4 |
| Single Shaft |  | Push-Pull Switch |  |  | 5B | A | NA | A |  |
|  | Vemier Drive | Potentiometer |  |  | 6A | A | A | A |  |
| Dual Unit Concentric Shaft | Potentiometer | Potentiometer |  |  | 7A | A | NA | A |  |
|  |  | Push-Pull Switch |  |  | 8A | A | NA | A |  |
|  |  | Rotary Switch |  |  | 9A | A | NA | A |  |
|  | Vemier Drive | Potentiometer |  |  | 10A | A | NA | A | 3 |
|  | Rotary Switch | Push-Pull Switch |  |  | 11A | A | NA | A |  |
| Triple Unit <br> Single Shaft | Potentiometer | Potentiometer | Potentiometer |  | 12A | A | NA | NA |  |
|  |  |  | Push Pull Switch |  | 12B | A | NA | NA |  |
|  |  | Rotary Switch | Push Pull Switch |  | 12C | A | NA | NA |  |
|  |  | Potentiometer | Rotary Switch |  | 13A | A | NA | NA |  |
|  |  | Rotary Switch |  |  | 13B | A | NA | NA |  |
|  | Vemier Drive | Potentiometer | Potentiometer |  | 14A | A | NA | NA |  |
| Triple Unit Concentric Shaft | Potentiometer | Potentiometer | Potentiometer |  | 15A | A | NA | NA |  |
|  |  |  | Rotary Switch |  | 16A | A | NA | NA |  |
|  |  |  | Push-Pull Switch |  | 17A | A | NA | NA |  |
|  |  | Rotary Switch |  |  | 18A | A | NA | NA |  |
|  | Vemier Drive | Potentiometer | Potentiometer |  | 19A | A | NA | NA | 1 or 3 |
|  |  |  | Rotary Switch |  | 20A | A | NA | NA | 1 |
| Quad Unit <br> Single Shaft | Potentiometer | Potentiometer | Potentiometer | Potentiometer | 23A | A | NA | NA |  |
|  |  |  |  | Push-Pull Switch | 23B | A | NA | NA |  |
|  |  |  | Rotary Switch |  | 23C | A | NA | NA |  |
|  | Vernier Drive | Potentiometer | Potentiometer | Potentiometer | 25A | A | NA | NA |  |
| Quad Unit Concentric Shaft | Potentiometer | Potentiometer | Potentiometer | Potentiometer | 26A | A | NA | NA |  |
|  |  |  |  | Rotary Switch | 27A | A | NA | NA |  |
|  |  | Rotary Switch |  |  | 28A | A | NA | NA | 1 |
|  |  | Potentiometer | Rotary Switch | Rotary Switch | 29A | A | NA | NA |  |
|  |  |  |  | Push-Pull Switch | 30A | A | NA | NA |  |
|  |  |  | Potentiometer |  | 31 A | A | NA | NA |  |
|  | Vemier Drive | Potentiometer |  | Potentiometer | 32A | A | NA | NA | 1.2 or 3 |
|  |  |  |  | Rotary Switch | 33A | A | NA | NA | 1 or 2 |

NOTES:

$$
\begin{aligned}
& \text { A - Available } \\
& \text { NA - Not Available }
\end{aligned}
$$

1. The outer shaft operates Sections *1 and \#2.
2. The outer shaft operates Sections "1, \#2 and "3.
3. The inner shaft ( .078 inch [ 1.98 mm ] diameter) is for the coarse adjustment, the outer shaft for the fine adjustment.

4 Series 72 must have 250 inch ( 6.35 mm ) diameter shaft.
5. Combination code used for reference to a type of buildup only. Refer to Dimension Section for Code Number Identification. This is not a part number.

Series 70, 72,73
SPECIFICATIONS

## General

TEMPERATURE RANGE

| Series | Unit | Maximum <br> Temp. ${ }^{\circ} \mathrm{C}$ | Minimum <br> Temp. ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
| 70 | Hot Molded or <br> Conductive <br> Plastic | $+120^{\circ}$ | $-55^{\circ}$ |
| 72 | Cermet | $+150^{\circ}$ | $-55^{\circ}$ |
| 73 | Hot Molded, <br> Conductive <br> Plastic or Cermet | $+100^{\circ}$ | $-55^{\circ}$ |
| $70,72,73$ | Hot Molded, <br> Conductive <br> Plastic or Cermet | $+120^{\circ}$ | $-55^{\circ}$ |
| $70,72,73$ | Vermier | $+100^{\circ}$ | $-55^{\circ}$ |
| Switches | $+100^{\circ}$ | $-55^{\circ}$ |  |

## POWER

| Power in Watts per Section    <br> Series Hot <br> Molded <br> at $70^{\circ} \mathrm{C}$ Hot- <br> Molded <br> at $40^{\circ} \mathrm{C}$ Cermet <br> at $70^{\circ} \mathrm{C}$ <br> $\mathbf{7 0}$ (single) 1.0 - 2.0 <br> at $70^{\circ} \mathrm{CP}$    |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | 5 | - | 10 | 25 |
| 72 (single) | 5 | - | 10 | 25 |
| 72 (dual) | 5 | - | 5 | 2.5 |
| 73 (single) | .75 | 1.0 | 2.0 | .5 |
| 73 (dual) | 5 | - | 1.0 | 25 |

Power derating - Derate power linearly from rated temperature to zero at maximum temperature. Derate power 50 percent for non-metallic mounting. Derate 60 percent for CP elements with " A " and " B " tapers. Derate 50 percent for hot-molded elements with " $A$ ", " B ", " S ", and "DB" tapers. For rheostat applications, derate power directly with shaft or actuator position.
Hardware - Hardware is: .250 inch ( $6,35 \mathrm{~mm}$ ) diameter bushing: (1) M-4748, (1) M-4721, (1) M-4761 (M-4761 is supplied only with locking bushings). 375 inch ( 9.52 mm ) diameter bushing: (1) M-2898, (1) M-2786, (1) M-3638 (M-3638 is supplied only with locking bushings).
All hardware shipped in bulk - not assembled unless otherwise specified.
Mounting torque (Series 72) - Torque applied to the mounting nuts should not exceed 7 inch-pounds ( 790 $\mathrm{mN}-\mathrm{m}$ ) for the 250 inch ( $6,35 \mathrm{~mm}$ ) diameter bushing or 14 inch pounds ( $1580 \mathrm{mN}-\mathrm{m}$ ) for the .375 inch ( $9,52 \mathrm{~mm}$ ) diameter bushing.

Turning torque - Initially, at $25^{\circ} \mathrm{C}$, the potentiometer torque will be 0.5 inch-ounce ( 3,5 $\mathrm{mN}-\mathrm{m}$ ) minimum while the maximum is:

|  | TORQUE INCH-OUNCES (mN-m) |  |
| :--- | :---: | :---: |
|  | Cermet and <br> Hot-Molded Elements | CP Elements |
| Single | $3(21)$ | $1.5(11)$ |
| Dual | $6(42)$ | $2.5(18)$ |
| Triple | $8(56)$ | $3.5(25)$ |
| Quad | $10(71)$ | $4.5(32)$ |

The maximum additional torque required for the vernier drive is 10 inch-ounces ( $71 \mathrm{mN} \cdot \mathrm{m}$ ) on inner, coarse adjustment shaft. See Page 147 for switch torques.
Stop torque - Minimum of 4 inch-pounds ( 451 $\mathrm{mN}-\mathrm{m}$ ) except for the Series 72 with a, 125 inch ( $3,18 \mathrm{~mm}$ ) diameter shaft which is 2 inch pounds ( 225 $\mathrm{mN}-\mathrm{m})$ minimum. Vernier drives have slip clutches.
Rotation -

|  | Rotation In Degrees |  |
| :--- | :---: | :---: |
|  | Total <br> Mechanical | Electrical |
| Potentiometers | 300 | 260 |
| Potentiometers and <br> Rotary Switch | 300 | 260 |
| Potentiometers and <br> Push-Pull Switches | 305 | 260 |
| Rotary Switches | 25 | - |
| Rotary Switches and <br> Push-Pull Switches | 30 | - |

Vernier drive - Two vernier drive modules are available with hot-molded and cermet modules. Through a gearing arrangement, the total rotation will be changed to 16 turms or 4 turns. A ratchet clutch is provided in place of fixed stops for the fine adjustment shaft. Series 70 and 73 variable resistors may have concentric shafts. The inner concentric shaft ( .078 inch [ $1,98 \mathrm{~mm}$ ] diameter) may be used as a coarse adjustment shaft.
Enclosure - Dust and splash resistant. They are not immersion sealed.
Materials - Corrosion-resistant and essentially nonmagnetic. The shafts and bushings of the Series 72 are plastic.
Standard marking - Allen-Bradley part number and nominal total resistance are marked in two lines. Other marking possible. A-B monogram plus "MOD POT"* always included.

## PREFERRED SHAFT LENGTHS AND ENDINGS

## Preferred Shaft Lengths in Inches

| Shaft Type | Preferred Shaft Lengths in Inches |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plain End |  |  | Slotted End |  |  | Flatted End |  |  |
|  | Series | $\begin{array}{\|l\|} \hline 70 \\ 73 \\ \hline \end{array}$ | 72 | Series | $\begin{aligned} & \hline 70 \\ & 73 \end{aligned}$ | 72 | Series | $\begin{aligned} & \hline 70 \\ & 73 \\ & \hline \end{aligned}$ | 72 |
| Solid .250 Inch Diameter ( 6.35 mm ) |  |  |  | See Note II | NA | A | - |  |  |
|  | 375 ( 9.52 mm ) | A | NA | 375 (9.52 mm) | A | NA | 750 (19.05 mm) | A | NA |
|  | $500(12.70 \mathrm{~mm})$ | A | NA | $500(12.70 \mathrm{~mm})$ | A | NA | - |  |  |
|  | 625 (15.88 mm) | A | NA | . $625(15,88 \mathrm{~mm}$ ) | A | NA | - |  |  |
|  | $750(19.05 \mathrm{~mm})$ | A | NA | $750(19.05 \mathrm{~mm})$ | A | A | - |  |  |
|  | 875 (22.22 mm) | A | NA | $875(22.22 \mathrm{~mm})$ | A | A | - |  |  |
| Solid 125 Inch Diameter ( 3.18 mm ) | 375 (9.52 mm) | A | NA | . 375 ( 9.52 mm ) | A | NA | 750 (19.05 mm) | A | N |
|  | $500(12.70 \mathrm{~mm})$ | A | A | $500(12.70 \mathrm{~mm})$ | A | NA | - |  |  |
|  | $625(15.88 \mathrm{~mm})$ | A | A | $625(15.88 \mathrm{~mm})$ | A | NA | - |  |  |
|  | $750(19.05 \mathrm{~mm})$ | A | A | $750(19,05 \mathrm{~mm})$ | A | NA | - |  |  |
|  | 875 (22.22 mm) | A | NA | $875(22.22 \mathrm{~mm})$ | A | NA | - |  |  |
| Outer Concentric | $500(12.70 \mathrm{~mm})$ | A | NA | Maximum shaft length 2.500 inches ( 63.50 mm ) for Senies 70 and 73 <br> All shaft lengths are measured from the mounting face of the bushing to the free end of the shaft. Shafts on push-pull switches are measured in the extended position. 078 inch ( 1.98 mm ) diameter solid and .125 inch $(3.18 \mathrm{~mm})$ diameter hollow shafts are only available with plain endings. See dimension drawings. Special shaft lengths in $1 / 64$ inch increments and special shaft endings can be supplied of the Series 70 and 73 |  |  |  |  |  |
|  | 625 ( 15.88 mm ) | A | NA |  |  |  |  |  |  |
|  | . 750 ( 19.05 mm ) | A | NA |  |  |  |  |  |  |
| Inner Concentric | 1.000 (25.40 mm) | A | NA |  |  |  |  |  |  |
|  | 1.125 (28.58 mm) | A | NA |  |  |  |  |  |  |
|  | $1.250(31.75 \mathrm{~mm})$ | A | NA |  |  |  |  |  |  |

BUSHINGS

| Diameter | Type | Length |  | Series |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Inches | Millimeters | 70 | 72 | 73 |
| See Note II |  |  |  | NA | A | NA |
| $\begin{aligned} & .250 \text { Inch } \\ & (6.35 \mathrm{~mm}) \end{aligned}$ | Plain | 250 | 6.35 | A | A | A |
|  |  | . 375 | 9.52 | A | NA | A |
|  | Locking | . 375 | 9.52 | A | NA | A |
|  |  | . 500 | 12.70 | A | NA | A |
| $\begin{aligned} & .375 \text { Inch } \\ & (9.52 \mathrm{~mm}) \end{aligned}$ | Plain | 250 | 6.35 | A | NA | A |
|  |  | 375 | 9.52 | A | A | A |
|  |  | . 500 | 12.70 | A | NA | NA |
|  | Locking | 375 | 9.52 | A | NA | A |
|  |  | . 500 | 12.70 | A | NA | A |

$$
\mathrm{A}=\text { Available } \quad \mathrm{NA}=\text { Not Available }
$$

## SHAFT AND BUSHING COMBINATIONS

| Shaft <br> Type | Shaft Diameter in Inches |  |
| :---: | :---: | :---: |
|  | Dia. Bushing | $250(6.35 \mathrm{~mm})$ |
|  | .250 | Dia. Bushing |
| Concentric | $(6.35 \mathrm{~mm})$ | 125 |
| Inner | $.125(3.18 \mathrm{~mm})$ | $(3.18 \mathrm{~mm})$ |
| Concentric | Verniers $(.078(1.98 \mathrm{~mm})$ | 078 |

Series 72 shafts and bushings are plastic.
1 No mounting bushing. Shaft is cross slotted for screwdriver actuation and is flush with the face plate. See dimensions on Page 150.

Mounting bushings are supplied with 32 NEF 2A thread All bushing lengths are measured from the mounting face to the end of the bushing.

## Environmental

Vibration -2 percent maximum change in total resistance. 5 percent maximum change in resistance setting. (Tested per method 204, condition "C" of MIL-STD-202.)
Shock -2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 213, condition " 7 " of MIL-STD-202.)
Humidity - Maximum change in total resistance as a result of 95 percent relative humidity at $40^{\circ} \mathrm{C}$ for 100 hours: 5 percent for cermet element. 10 percent for hot-molded and CP elements.
Temperature cycling -3 percent maximurn change in total resistance as a result of the temperature cycling test. (Five cycles at $-55^{\circ} \mathrm{C}$ to the maximum temperature.)

Effect of soldering - Maximum change in total resistance as a result of immersing the terminals in $350^{\circ} \mathrm{C}$ solder to within 0.125 inch $(3.18 \mathrm{~mm})$ of the resistor body for 5 seconds: 1 percent for cermet element, 2 percent for hot-molded and CP elements.
Low temperature operation - Maximum change in total resistance as a result of the low temperature operation test ( $-55^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load) 2 percent for cermet element, 3 percent for hot-molded and CP elements.
High temperature exposure - Maximum change in total resistance as a result of the high temperature exposure test (maximum rated temperature for 1000 hours without load) 4 percent cermet element. 10 percent hot-molded and CP elements.

## Operational

Comtact resistance variation - linear taper - Maximum value is: Hot Molded \& Cermet - 1.5 percent of nominal resistance value or 1.5 ohms, whichever is greater. CP 1.0 percent of nominal resistance value.
Load life - Maximum change in total resistance as a result of a 1000 hour test at rated power across entire element at $+70^{\circ} \mathrm{C}(1.5$
hour "ON", 0.5 hour "OFF") 5 percent for cermet element, 10 percent for hot-molded and CP elements.
Rotational life - 10 percent maximum change in total resistance as a result of a 100,000 cycle life test without load.

## Electrical

Total resistance values - Preferred nominal values

- see below for Resistance Ranges.


## OHMS

| 50 | 750 | 10 K | 200 K | 1.0 Meg. |
| ---: | ---: | ---: | ---: | ---: |
| 75 | 1 K | 20 K | 250 K | 2.5 Meg. |
| 100 | 2 K | 25 K | 500 K | 5.0 Meg. |
| 200 | 2.5 K | 50 K | 750 K | 10.0 Meg. |
| 250 | 5 K | 75 K |  |  |
| 500 | 7.5 K | 100 K |  |  |

Total resistance tolerances - Hot-Molded, CP $\pm 10 \%$ or $\pm 20 \%$; Cermet $- \pm 10 \%$

## TAPERS



Tapers - Available in the following resistance ranges:

| UNIT | TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: | :---: |
| Hot- <br> Molded | $U$ | 50 Ohms to 10.0 Megohms |
|  | A. B. S \& DB | 250 Ohms to 10.0 Megohms |
| Cermet | U | 100 Ohms to 5.0 Megohms |
| CP | U | 100 Ohms to 1.0 Megohm |
|  | A \& B | 250 Ohms to 1.0 Megohm |

Independent linearity - $\pm 5$ percent for linear tapers with a total resistance up to 1.0 megohm.
Dielectric withstanding voltage - Maximum continuous voltage, 350 volts (RMS) at sea level. Will withstand a one second test of 1000 volts (RMS) at sea level or 500 volts (RMS) at 3.4 inches $(86,36)$ mercury.
Insulation resistance - 1000 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.
Temperature coefficient - Total resistance change less than $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, cermet linear taper.

Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See chart below.

| Nominal | CP - "U" Linear Taper. ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in Ohms | $-55^{\circ}$ | $-25^{\circ}$ | $0^{\circ}$ | $+25^{\circ}$ | $+55^{\circ}$ | $+85^{\circ}$ | $+100^{\circ}$ | $+120^{\circ}$ |
| 100 | $-9.0$ | -6.0 | $-3.0$ | 0 | $+3.5$ | +6.5 | +8.0 | $+10$ |
| 1K | $\pm 5.5$ | $\pm 3.0$ | $\pm 15$ | 0 | $\pm 1.5$ | $\pm 3.0$ | $\pm 4.0$ | $\pm 5.0$ |
| 10K | +5.0 | $+3.0$ | $\pm 1.5$ | 0 | $\pm 20$ | $\pm 2.0$ | $\pm 2.5$ | $\pm 3.0$ |
| 100K | +5.0 | $+3.0$ | $\pm 15$ | 0 | $\pm 2.0$ | $\pm 2.0$ | $\pm 2.5$ | $\pm 30$ |
| 1.0 Meg . | $+60$ | $+3.0$ | $\pm 2.0$ | 0 | $\pm 2.5$ | $\pm 3.0$ | $\pm 40$ | +50 |
| Nominal <br> Resistance <br> in Ohms | HOT MOLDED - "U" Linear Taper, ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
|  | $-55^{\circ}$ | -25 ${ }^{\circ}$ | $0^{\circ}$ | +25 ${ }^{\circ}$ | +55 ${ }^{\circ}$ | +85 ${ }^{\circ}$ | $+100^{\circ}$ | $+120^{\circ}$ |
| 100 | + 4.5 | +2.5 | +15 | 0 | $\pm 10$ | $\pm 1.5$ | +2.0 | $+3.5$ |
| 1 K | $\begin{array}{r}\text { + } \\ + \\ \hline\end{array}$ | $+3.0$ | +15 | 0 | $\pm 10$ | $\pm 2.0$ | $+2.5$ | $+45$ |
| 10K | $\begin{array}{r}55 \\ +70 \\ \hline\end{array}$ | $+3.5$ | +20 | 0 | $\pm 1.0$ | $\pm 2.5$ | 130 | +5.5 |
| 100K | +800 | +4.0 | +2.0 | 0 | $\pm 1.5$ | $\pm 30$ | $+35$ | $+6.0$ |
| 1.0 Meg . | +10.0 | +5.0 | +25 | 0 | $\pm 1.5$ | $\pm 35$ | +50 | $+75$ |

For " S ". " A ", " B " and " DB " tapers multiply percentage figures shown above by 125 on Hot Molded elements.

## End resistance -

|  | Minimum Resistance <br> Between Terminals: |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TAPER | Hot- <br> Molded |  | CP and <br> Cermet |  |
|  | $\mathbf{1 \& 2}$ | $2 \& 3$ | $1 \& 2$ | $2 \& 3$ |
| U | $\mathbf{n}$ | $\mathbf{a}$ | $\mathbf{a}$ | $\mathbf{a}$ |
| S | $\mathbf{a}$ | $\mathbf{a}$ | - | - |
| A | $\mathbf{a}$ | $\mathbf{a}$ | $\mathbf{a}$ | $\mathbf{a}$ |
| B | $\mathbf{a}$ | $\mathbf{a}$ | $\mathbf{a}$ | $\mathbf{\square}$ |
| DB | $\mathbf{B}$ | $\mathbf{a}$ | - | - |

[^3]Taps - A tap is available on hot-molded modules with lug terminals at 50 percent of mechanical rotation. Resistance tolerance $\pm 20$ percent. Unless otherwise specified low series tap resistance is provided. See dimensions on Page 149.
Voltage - 350 volts maximum working voltage (RMS or DC), or as determined by Emax. $=\sqrt{\text { PR }}$, whichever is less (at sea level).

| ATTENUATORS - HOT MOLDED |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Series | Bridged-T | L | Bridged-H | Straight-T |
| 70 | A | A | A | A |
| 72 | A | A | NA | NA |
| 73 | A | A | NA | NA |

Consult tactory for further details
$\mathrm{A}=$ Available $\quad \mathrm{NA}=$ Not Available

Rotary Switch - The rotary switch consists of two sets of contacts. See Part Number Explanation for available options. When supplied on the Series 72 , the rotary switch must be used with a 250 inch ( $6,35 \mathrm{~mm}$ ) diameter shaft.
Push-pull switch - A four pole switch that is operated by a .125 inch ( $3,18 \mathrm{~mm}$ ) diameter solid shaft. An inner concentric shaft that operated the push-pull switch only may have a diameter of .125 inch ( $3,18 \mathrm{~mm}$ ) or .078 inch $(1,98 \mathrm{~mm})$. Shaft lengths are measured from the bushing mounting surface to the free end of the shaft with the shaft in the extended position. Available only on Series 70 and 73.
Momentary push switch - A push-pull switch equipped with a return spring such that the switch will return to the extended position when the actuating force is removed. Available only on Series 70 and 73.
Ambient temperature $--55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
Life - The switches will be electrically and mechanically operative after operational life test at rated current and voltage with a resistive load, as per switch characteristics below.

Terminals - Switches are available with lug terminals only. They are not available with square terminals. On request, switches will be rotated $90^{\circ}$ such that the switch terminals come out the sides of the control instead of the top and bottom.

## SWITCH PART NUMBER EXPLANATION

| Switch Number | Switch Type | $\begin{aligned} & \text { Detent } \\ & \text { At } \end{aligned}$ | In Detent |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { Terminals } \\ 1 \& 2 \end{gathered}$ | $\begin{gathered} \text { Terminals } \\ 3 \& 4 \end{gathered}$ |
| 3001 | Push-Pull | - | - | - |
| 3002 | Momentary Push | - | - | - |
| 18T1 | Rotary | CCW end | Open | Closed |
| 1001 |  |  |  |  |
| 2BT1 | Rotary | CW end | Open | Closed |
| 2001 |  |  |  |  |
| 1BT3 | Rotary | CCW end | Open | Open |
| 1003 |  |  |  |  |
| 2BT3 | Rotary | CW end | Open | Open |
| 2003 |  |  |  |  |

## SWITCH CHARACTERISTICS

| Switch Type | Voltage In Volts at 60 Hz RMS | $\begin{gathered} \text { Current } \\ \text { In } \\ \text { Amps } \end{gathered}$ | Actuating Force (Initially, $25^{\circ} \mathrm{C}$ ) |  | Length of Throw |  | Operational <br> Life In <br> Cycles |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Shaft Operates Switch \& Po | Shaft Operates Switch Only |  |
|  |  |  | Minimum | Maximum |  |  |  |
| Push-Pull <br> 3001 | 125 | 2 | $\begin{gathered} \hline 7 \text { ounces } \\ (1,9 \mathrm{~N}) \end{gathered}$ | $\begin{gathered} 19 \text { ounces } \\ (5,3 \mathrm{~N}) \end{gathered}$ | $\begin{gathered} .125 \mathrm{In} . \\ (3,18 \mathrm{~mm}) \end{gathered}$ | $\begin{gathered} .125 \mathrm{ln} . \\ (3,18 \mathrm{~mm}) \end{gathered}$ | 25,000 |
| Momentary Push 3002 | 125 | 2 | $\begin{gathered} 20 \text { ounces } \\ (5,6 \mathrm{~N}) \end{gathered}$ | $\begin{gathered} 30 \text { ounces } \\ (8,3 \mathrm{~N}) \end{gathered}$ | $\begin{gathered} .125 \mathrm{In} . \\ (3,18 \mathrm{~mm}) \end{gathered}$ | $\begin{gathered} .125 \mathrm{ln} . \\ (3,18 \mathrm{~mm}) \end{gathered}$ | 25,000 |
| $\begin{aligned} & \text { Rotary } 1001 \\ & 1003,2001,2003 \\ & \hline \end{aligned}$ | 125 | 2 | - | $\begin{gathered} 20 \text { inch-ounces } \\ (141 \mathrm{mN}-\mathrm{m}) \end{gathered}$ | $15^{\circ}$ | $25^{\circ}$ | 25,000 |
| Rotary | 125 | 1 | 3.5 inch-ounces ( $24,7 \mathrm{mN}-\mathrm{m}$ ) | $\begin{gathered} 7.5 \text { inch-ounces } \\ (53 \mathrm{mN}-\mathrm{m}) \end{gathered}$ | $15^{\circ}$ | $25^{\circ}$ | 5,000 |
| $\begin{aligned} & \text { 1BT1, 1BT3 } \\ & \text { 2BT1, 2BT3 } \end{aligned}$ | 1 | . 01 | 3.5 inch-ounces ( $24,7 \mathrm{mN}-\mathrm{m}$ ) | $\begin{aligned} & 7.5 \text { inch-ounces } \\ & (53 \mathrm{mN}-\mathrm{m}) \end{aligned}$ | $15^{\circ}$ | $25^{\circ}$ | 5,000 |

Rotary Switches


Switch Number 1BT1, 1001, 2BT1 or 2001 Shown in Detent


Switch Number 1BT3, 1003, 2BT3 or 2003 Shown in Detent

Push-Pull or Momentary Push Switch


Switch Number 3001 or 3002 With Shaft Extended

## Series 70, 72, 73

## DIMENSIONS

## Switches and potentiometers - lug terminals



Basic dimensions in inches.
Dimensions in parentheses are in millimeters. TOLERANCE
Dimensional Tolerance $\pm .016(0,40)$
Except as Specified
Terminal numbers for reference ONLY.
Module letters for reference
ONLY.
NOT TO SCALE


Combination code used for reference to a type of buildup only. This is not a part number

## DIMENSIONS

## Potentiometers - lug terminals

Terminal numbers for reference only. Terminal hole size $047 \times 005 \times 078 \pm 005$

Basic dimensions in inches, Dimensions shown in ITALICS are in millimeters.
TOLERANCE
Dimensional Tolerance $\pm .016(0,40)$
Except as Specified
NOT TO SCALE

\#2
$\left[\begin{array}{ll}\text { Mor motasid } & 36219.991 \\ \text { 2no Cremet } & \\ \text { ce } & 39518.761\end{array}\right.$


Cermet 125 mex.
Cermet 125 mex.


Combination code used for reference to a type of buildup only. This is not a part number

Series 70, 72, 73

## DIMENSIONS

## Potentiometers - square terminals


Dual Unit
Concentric or
Single Shaft


Combination code used for reference to a type of buildup only. This is not a part number.

## DIMENSIONS

## Bushing, shaft and hardware dimensions

. 250 (6.35) Diameter Bushings


Standard Slotted Shaft


Concentric Shafts Plain Ending

## .375 (9,53) Diameter Bushings


"B": standahd bushing lengths
 Plain Bushing $\left(\begin{array}{c}\left(\begin{array}{c}0,0 \\ 0.00 \\ 0.05\end{array}\right)\end{array}\binom{0}{0}\right.$


## DIMENSIONS



Options 6.7 and C


Options 8. 9 and D


Locating Lugs Compatible With RV4
Locating lug options - Series 72 and 73


| Series | Available Lug Options |
| :--- | :--- |
| 70 | $1,2,3,4,5,6,7,8,9$, A B, B, D |
| 72 | 1,4, A |
| 73 | $1,4, \mathrm{~A}$ |

I Series 70 Option No 4: No Locating Lug.

NOTE: Part number format allows for development of some part numbers which cannot be manufactured. (Example: 70A1G400L101A. which has an invalid shaft length and invalid resistance value for an " A " taper.) Check parameter limits in preceding text. when developing a part number.
Combinations which are valid and do not fit into a part number. (Examples: Concentric shafts, push -pull switches, special tapers. etc.) will be assigned a special part number by the factory. Refer to "Ordering Information", below, for the required data for the assignment of a special part number.


## Ordering information

1 Basic type (Series 70. Series 72 or Series 73)
2 Type of element (cermet, hot-molded or conductive plastic [CP])
3. Type of terminals (resistor element only).
4. Number of sections.
5. Taper (each element on multi-section controls).
6. Total resistance value (each element on multisection controls) in ohms.
7. Tolerance leach element
on multi -section controls) percent.
8. Bushing type (plain or locking).
9 Bushing length in inches or millimeters.
10. Bushing diameter 375
inch $(9.52 \mathrm{~mm})$ or 250 inch $(6.35 \mathrm{~mm})$.
11. Shaft ending (plain. slotted or flatted)
12. Shaft length from mounting surface in inches or millimeters.
13. Switch type
14. Vernier drive
15. Locating lug option.
16. Mounting hardware ( $A \cdot B$ standard or other).
17. Your part number, if any.
18. Marking required on the part.
19. Special features.

## SPECIFICATION MIL-R-94 PART NUMBER EXPLANATION

The following is an explanation of the part numbers used to identify Specification MIL-R-94 Variable Resistors. Part number format does not allow for exclusion of invalid mechanical and/or electrical combinations.

Example of Complete Designation:


Table 1 - Style

| MIL-R-94 <br> Style | Allen-Bradley <br> Type |
| :---: | :---: |
| RV4 | J |
| RV6 | G or W |
| 2RV7 | J (Dual) |

Table 3 - Switch

| Switch | RV4 | RV6 | 2 RV7 |
| :---: | :---: | :---: | :---: |
| 'A' | No Switch | No Switch | ■ |
| 'B' | SPST Switch | N/A | ■ |

Table 5 - Shaft Ending

| Shaft <br> Ending | RV4 | RV6 | 2RV7 |
| :---: | :---: | :---: | :---: |
| S | Slotted | Slotted | Slotted |

Table 2-Bushing Type and Length

| Bushing <br> Type | RV4 <br> Length | RV6 <br> Length | 2RV7 <br> Length |
| :---: | :---: | :---: | :---: |
| N | Plain <br> $3 / 8$ in. | Plain <br> $1 / 4$ in. | Plain <br> $3 / 8$ in. |
| L | Locking <br> $1 / 2$ in. | Locking <br> $1 / 2$ in. | Locking <br> $1 / 2$ in. |
| S | Shaft and <br> Panel - Sealed <br> (non-locking) <br> $3 / 8$ in. | Shaft and <br> Panel - Sealed <br> (non-locking) <br> $1 / 4$ in. | Shaft and <br> Panel - Sealed <br> (non-locking) <br> $3 / 8$ in. |
| T | $\mathrm{N} / \mathrm{A}$ | Shaft and <br> Panel - Sealed <br> (locking) <br> $1 / 2$ in. | $\mathrm{N} / \mathrm{A}$ |

Table 4 - Temperature and Moisture Resistance Characteristics

| Temperature and <br> Moisture Resistance <br> Characteristics | RV4 | RV6 | 2RV7 |
| :---: | :---: | :---: | :---: |
| Symbol | Y | Y | Y |

E1 Not shown in part number for 2RV7.
[ Dual units - two resistance values shown in this space for 2RV7. (Example: 102 102).

Table 6 - Shaft Length

| Shaft <br> Length <br> Symbol | RV4 ${ }^{\text {a }}$ |  | RV6 ${ }^{\text {a }}$ |  | 2RV7 ${ }^{\text {P }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bushings N and S | Bushing L | Bushings N and S | Bushings L and T | Bushings N and S | Bushing L |
| A...- | N/A | 5/8in. | 5/8in. | 5/8in. | N/A | 5/8in. |
| B...- | $1 / 2 \mathrm{in}$. | N/A | N/A | N/A | $1 / 2 \mathrm{in}$. | N/A |
| D.-. | 7/8in. | 7/8in. | 7/8in. | 7/8in. | $7 / 8 \mathrm{in}$. | 7/8in. |
| G--. | $11 / 4 \mathrm{in}$. | N/A | N/A | N/A | $11 / 4 \mathrm{in}$. | N/A |
| J ...- | 2 in . | N/A | N/A | N/A | 2 in . | N/A |
| K--. | $21 / 2 \mathrm{in}$. | N/A | N/A | N/A | $21 / 2 \mathrm{in}$. | N/A |
| L | N/A | N/A | $3 / 8 \mathrm{in}$. | N/A | N/A | N/A |
| N...- | $11 / 2 \mathrm{in}$. | N/A | N/A | N/A | 11/2 in. | N/A |

II Shafts are measured from mounting surface to end of shaft.

Table 8 - Taper Type and Total Resistance Tolerance

| Symbol | Total <br> Resistance <br> Tolerance \% \% | RV4 | Allen- <br> Bradley | RV6 | Allen- <br> Bradley | 2RV7 | Allen- <br> Bradley |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $\pm 10$ | A | U | Taper | Taper | Taper | Taper |
| B | $\pm 20$ | A | U | A | U | A | U |
| C | $\pm 10$ | C | A | C | A | N/A | N/A |
| D | $\pm 20$ | C | A |  |  |  |  |
| D | C | A | N/A | N/A |  |  |  |
| E | $\pm 10$ | F | B | F | B | N/A | N/A |
| F | $\pm 20$ | F | B | F | B | N/A | N/A |

INCHES $\rightarrow$ METRIC
CONVERSION TABLE

| INCHES |  | MM |  | INCHES |  |
| :---: | ---: | ---: | ---: | ---: | :---: |
| MM |  |  |  |  |  |
| $1 / 4$ | .250 | 6,35 | 1 | 1.000 | 25,40 |
| $1 / 8$ | .375 | 9,52 | $11 / 4$ | 1.250 | 31,75 |
| $1 / 2$ | .500 | 12,70 | $11 / 2$ | 1.500 | 38,10 |
| $5 / 18$ | .625 | 15,88 | 2 | 2.000 | 50,80 |
| $1 / 4$ | .750 | 19,05 | $21 / 2$ | 2.500 | 63,50 |
| $1 / 8$ | .875 | 22,22 |  |  |  |

Table 7 - Resistance Values

| Resistance Symbol | RV4 | RV6 | 2RV7 |
| :---: | :---: | :---: | :---: |
|  | Resistance Value (Ohms) | Resistance Value (Ohms) | Resistance Value (Ohms) |
| 500 | 50 | - | 50 |
| 101 | 100 | 100 | 100 |
| 151 | 150 | - | 150 |
| 201 | 200 | 200 | 200 |
| 251 | 250 | 250 | 250 |
| 351 | 350 | - | 350 |
| 501 | 500 | 500 | 500 |
| 751 | 750 | - | 750 |
| 102 | 1K | 1 K | 1 K |
| 152 | 1.5 K | - | 1.5 K |
| 202 | 2K | 2K | 2K |
| 252 | 2.5 K | 2.5 K | 2.5 K |
| 352 | 3.5K | - | 3.5K |
| 502 | 5K | 5K | 5K |
| 752 | 7.5 K | - | 7.5 K |
| 103 | 10K | 10K | 10K |
| 153 | 15K | - | 15K |
| 203 | 20K | 20K | 20K |
| 253 | 25K | 25K | 25K |
| 353 | 35 K | - | 35 K |
| 503 | 50K | 50K | 50K |
| 753 | 75 K | - | 75K |
| 104 | 100K | 100K | 100 K |
| 154 | 150K | - | 150K |
| 204 | 200 K | 200K | 200K |
| 254 | 250 K | 250 K | 250 K |
| 354 | 350K | - | 350K |
| 504 | 500K | 500K | 500K |
| 754 | 750K | - | 750 K |
|  | Megohms | Megohms | Megohms |
| 105 | 1.0 | 1.0 | 1.0 |
| 155 | 1.5 | - | 1.5 |
| 205 | 2.0 | 2.0 | 2.0 |
| 255 | 2.5 | 2.5 | 2.5 |
| 355 | 3.5 | - | 3.5 |
| 505 | 5.0 | 5.0 | 5.0 |

## The one variable the world can standardize on.

Our new Type M conductive plastic variable resistor is hard metric. A 10 mm cube that's tiny, flexible and rugged. The MINI-METRIC is the smallest dual pot available today. Manufactured in the United States, it's dimensioned the way the rest of the world thinks. Allen-Bradley has what you need; or, it can be ordered through our distributors. Ask for Publication EC5610-2.1.

Choices
single or dual pot or pot/switch combinations


Quality in the best tradition.


# trimming <br> potentiometers 

## CERMET <br> HOT-MOLDED <br> COMPOSITION

## trimming potentiometers

comprehensive product index

| DESCRIPTION | TYPE | PAGE |
| :---: | :---: | :---: |
| CERMET SINGLE TURN |  |  |
| Round Configuration |  |  |
| $\begin{aligned} & \text { 3/8 (0.375) Inch }(9,52 \mathrm{~mm}) \text { Diameter - } \\ & 0.5 \text { Watt }\left(85^{\circ} \mathrm{C}\right) \end{aligned}$ | Type S | 160 |
| $\begin{aligned} & \text { 0.467 Inch }(11,9 \mathrm{~mm}) \text { by } \\ & \text { 0.393 Inch }(10,0 \mathrm{~mm})- \\ & \text { 0.5 Watt }\left(70^{\circ} \mathrm{C}\right) \\ & \text { 1.0 Watt }\left(40^{\circ} \mathrm{C}\right) \end{aligned}$ | Type 90 | 163 |
| HOT-MOLDED COMPOSITION SINGLE TURN |  |  |
| Round Configuration |  |  |
| $\begin{aligned} & 1 / 2(0.5) \text { Inch }(12,70 \mathrm{~mm}) \text { Diameter - } \\ & 0.25 \text { Watt }\left(70^{\circ} \mathrm{C}\right) \end{aligned}$ | Type F | 166 |
| $\begin{aligned} & 1 / 2(0.5) \text { Inch }(12,70 \mathrm{~mm}) \text { Diameter - } \\ & \text { 0.25 Watt }\left(50^{\circ} \mathrm{C}\right) \end{aligned}$ | Type Y | 177 |
| $\begin{aligned} & \text { 1/2 (0.5) Inch }(12,70 \mathrm{~mm}) \text { Diameter - } \\ & 0.25 \text { Watt }\left(50^{\circ} \mathrm{C}\right) \end{aligned}$ | W Type BT | 192 |
| $1 / 2$ (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter (Dual) - 0.25 Watt $\left(70^{\circ} \mathrm{C}\right)$ | T Type FD | 181 |
| HOT-MOLDED COMPOSITION MULTI-TURN |  |  |
| Rectangular Configuration |  |  |
| 1-1/4 (1.25) Inch ( $31,75 \mathrm{~mm}$ ) <br> Long Rectangular -0.33 Watt $\left(50^{\circ} \mathrm{C}\right)$ | Type N | 170 |
| $1-1 / 4$ (1.25) Inch ( $31,75 \mathrm{~mm}$ ) <br> Long Rectangular -0.25 Watt $\left(70^{\circ} \mathrm{C}\right)$ | Type R | 173 |

# trimming potentiometers 

TYPE 90:
Cermet, single turn, 0.5 W at $70^{\circ} \mathrm{C}, 1.0 \mathrm{~W}$ at $40^{\circ} \mathrm{C}, 100$ ohms to 2 megs, $\pm 20 \%$, pin terminals, top and side adjustment, linear taper.

TYPE S:
Cermet, single turn, 0.5 W at $85^{\circ} \mathrm{C}, 50$ ohms to 1 meg. $\pm 10 \%$, pin terminals, top and side adjustment, linear taper.


TYPE R:
Hot-molded composition, 25 turns, 0.25 W at $70^{\circ} \mathrm{C}$, 100 ohms to 2.5 megs, $\pm 10 \%$ and $\pm 20 \%$, pin or solder lug terminals, linear taper.

TYPE N:
Hot-molded composition 25 turns, 0.33 W at $50^{\circ} \mathrm{C}$, 100 ohms to 2.5 megs, $\pm 10 \%$ and $\pm 20 \%$, pin terminals, linear taper.


## TYPE F:

Hot-molded composition, single turn, 0.25 W at $70^{\circ} \mathrm{C}$, 100 ohms to 5 megs, $\pm 10 \%$ and $\pm 20 \%$, pin or solder lug terminals, top and side adjustment, 5 standard tapers.


TVPE ED:
Dual version of Type F; front section: solder lug only, rear section: pin or lug. Well suited for Bridged-T or L-pad attenuator applications.

TYPE BT:
An all plastic version of the Type FD for excellent performance at high frequencies. Two terminal configurations avaialble. Also well suited for Bridged-T or L-pad attenuator applications.

TYPE Y:
Hot-molded composition, single turn, 0.25 W at $50^{\circ} \mathrm{C}$, 100 ohms to 5 megs, $\pm 10 \%$ and $\pm 20 \%$, pin or solder lug terminals, 5 types, top and side adjustment, 5 standard tapers.

## SELECTOR GUIDE

| Type | Publication Number | Resistance Element and Adjustment Turns | Resistance <br> Range and <br> Tolerance | Power | Voltage Rating (RMS or DC) | Operating Temperature Range | Terminal Types | Case Dimensions in Inches (millimeters) | Enclosure | Page Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90 | EC5770-2.1 | Cermet Single Turn | 100 Ohms to 2 Megohms $\pm 20 \%$ | 0.5 Watt <br> at $70^{\circ} \mathrm{C}$ <br> 1.0 Watt <br> at $40^{\circ} \mathrm{C}$ | 200 V | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Pin | $\begin{gathered} \text { L } 0.466(11,9) \\ \text { W } 0.393(10,0) \\ \text { D } 0.228(5,8) \end{gathered}$ | Open Frame | 163 |
| S | EC5720-2.1 |  | 50 Ohms to <br> 1 Megohm $\pm 10 \%$ | $\begin{aligned} & 0.5 \text { Watt } \\ & \text { at } 85^{\circ} \mathrm{C} \end{aligned}$ | 300 V | $\begin{aligned} & -65^{\circ} \mathrm{C} \text { to } \\ & +150^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & \hline 0.375(9,52) \\ & \text { Diameter by } \\ & 0.375(9,52) \end{aligned}$ | Immersion Sealed | 160 |
| N | EC5815-2.1 | Composition Multi-Turn | 100 Ohms to 2.5 Megohms $\pm 10 \%$, $\pm 20 \%$ | $\begin{aligned} & 0.33 \text { Watt } \\ & \text { at } 50^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \text { L } 1.250(31,75) \\ & \text { H } 0.359(9,13) \\ & \text { W } 0.250(6,35) \end{aligned}$ |  | 170 |
| R | EC5820-2.1 |  |  | $\begin{array}{\|l} \hline 0.25 \text { Watt } \\ \text { at } 70^{\circ} \mathrm{C} \\ \hline \end{array}$ |  | $\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$ | Pin or Solder Lug |  |  | 173 |
| F | EC5806-2.1 | Composition Single Turn | 100 Ohms to 5 Megohms $\pm 10 \%, \pm 20 \%$ | $\begin{aligned} & \text { 0.25 Watt } \\ & \text { at } 70^{\circ} \mathrm{C} \end{aligned}$ | 350 V | $\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +120^{\circ} \mathrm{C} \end{gathered}$ | Pin or Solder Lug | $\begin{aligned} & \hline 0.500(12,70) \\ & \text { Diameter by } \\ & 0.531(13,49) \\ & \hline \end{aligned}$ |  | 166 |
| FD | EC5838-2.1 |  |  |  |  |  | Front: Lug Rear: Lug or Pin | $\begin{aligned} & \hline 0.500(12,70) \\ & \text { Diameter by } \\ & 0.688(17,46) \\ & \hline \end{aligned}$ |  | 181 |
| BT | EC5920-2.1 |  |  | Consult Factory |  | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +120^{\circ} \mathrm{C} \end{aligned}$ | Front: 3 Lugs <br> Rear: 3 Pins or Front: 2 Pins Rear: 2 Pins | $0.500(12,70)$ <br> Diameter by <br> $0.535(13,59)$ | Dust and Splash Resistant | 192 |
| Y | EC5828-2.1 |  |  | $\begin{gathered} 0.25 \text { Watt } \\ \text { at } 50^{\circ} \mathrm{C} \end{gathered}$ | 350 V | $\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +100^{\circ} \mathrm{C} \end{gathered}$ | Pin or Solder Lug | $0.500(12,70)$ Diameter by $0.359(9,13)$ | Dust and Splash Resistant | 177 |

TypeS

## Cermet Trimming Potentiometers

### 0.5 Watt $\left(85^{\circ} \mathrm{C}\right)$

3/8 (0.375) Inch ( $9,52 \mathrm{~mm}$ ) Diameter 50 Ohms to 1.0 Megohm

## FEATURES

- TCR< $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Cermet Single Turn
- Horizontal or Vertical Mounting
- Multi-Fingered Wiper
- Immersion Sealed
- $\pm 10 \%$ or $\pm 5 \%$ Tolerance


## SPECIFICATIONS

## General

Temperature range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
Total resistance values - 50 ohms to 1.0 megohm. EIA and IEC resistance values available as shown on the following pages.
Total resistance tolerances - $\pm 10$ percent standard. $\pm 5 \%$ available on request.
Taper - Standard linear. Other tapers, consult factory.
End resistance - Less than 5 ohms at both ends.

## Electrical

Power - 0.5 watt at $+85^{\circ} \mathrm{C}$, derate to zero at $+150^{\circ} \mathrm{C}$.
Power derating - Linearly with actuator position for rheostat usage.
Voltage - 300 volts RMS maximum within power rating limits.
Dielectric withstanding voltage - 750 volts at sea level for one second.
Insulation resistance - 1000 meghoms minimum.

## Operational

Contact resistance variation - Typically less than 3 percent of total resistance or 3 ohms, whichever is greater.
Load life -1000 hours at $+85^{\circ} \mathrm{C}, 3$ percent maximum change in total resistance.
Rotational life - 1000 cycles, 5 percent maximum change in total resistance.

## Mechanical

Rotation - $280^{\circ} \pm 10^{\circ}$ stop to stop.
Turning torque -0.5 to 6.0 inch-ounces $(0,036$ to $0,44 \mathrm{kgf}-\mathrm{cm})$.
Stop torque - 25 inch-ounces ( $1,8 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Construction - Immersion sealed per MIL-R-22097.
Terminals - Solderable per method 208, MIL-STD202.

Weight - Approximately 0.05 ounce ( $1,3 \mathrm{gm}$ ).
Marking - Allen-Bradley part number and nominal total resistance are marked in two lines. Other marking possible, limited to a maximum of 13 characters in each of two lines. A-B monogram plus "Type S" always included.

## Cermet Trimming <br> Potentiometers

## Environmental

| PARAMETER | MAXIMUM CHANGE | TEST METHOD |
| :--- | :---: | :--- |
| Vibration | $2 \%$ Total Resistance | Method 204, Cond. D, MIL-STD-202 |
| Shock | $2 \%$ Setting Stability |  |
| Moisture Resistance | $2 \%$ Total Resistance | Method 213, Cond. I, MIL-STD-202 |
| Corrosion Resistance | $2 \%$ Total Resistance | Method 106, MIL-STD-202 |
| Effect of Soldering | 96 Hour Test | Method 101, MIL-STD-202 (200 Hrs.) |
| High Temperature Exposure | $3 \%$ Total Resistance | MIL-R-22097 (5 Sec., 0.062 Inch) |
| Low Temperature Operation | $2 \%$ Total Resistance | MIL-R-22097 (1000 Hrs. at 150 $\left.{ }^{\circ} \mathrm{C}\right)$ |
| Thermal Shock | $3 \%$ Total Resistance | MIL-R-22097 ( $-65^{\circ} \mathrm{C}$ ) |
| Temperature Coefficient | $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max. | Method 107, MIL-STD-202 |
|  |  | Method 304, MIL-STD-202 |
|  |  |  |

Note: Unless otherwise specified, Terms, Definitions, and Test Procedures are in accordance with
Varlable Resistive Components Institute Standards vreit 110 and vrcit 215


## DIMENSIONS

## Vertical adjustment

Basic dimensions
in inches.
Dimensions shown in parentheses are in millimeters.
TOLERANCES
Dimensional tolerance $\pm .016(0,40)$
Angular
tolerance $\pm 5^{\circ}$
Except as specified.


## DIMENSIONS



## EXPLANATION OF PART NUMBERS



TOTAL RESISTANCE VALUES AND TOLERANCE

| OHMS $\pm \mathbf{1 0} \%$ |  |  |  |  |  |  |  |  |
| ---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 50 | 200 | 750 | 2.5 K | 10 K | 50 K | 200 K | 750 K |  |
| 75 | 250 | 1 K | 5 K | 20 K | 75 K | 250 K | 1 Meg. |  |
| 100 | 500 | 2 K | 7.5 K | 25 K | 100 K | 500 K |  |  |

IEC STANDARD RESISTANCE VALUES AVAILABLE BY SPECIAL ORDER

|  | 220 | 2.2 K | 22 K | 220 K |
| :--- | :--- | :--- | :--- | :--- |
| 47 | 470 | 4.7 K | 47 K | 470 K |

For other values consult factory.


## type 90 <br> Cermet Trimming Potentiometers

### 1.0 Watt $\left(40^{\circ} \mathrm{C}\right) 0.5$ Watt $\left(70^{\circ} \mathrm{C}\right)$

0.467 Inch ( $11,9 \mathrm{~mm}$ ) by
0.393 Inch ( $10,0 \mathrm{~mm}$ )

100 Ohms to 2.0 Megohms
FEATURES

- TCR $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Cermet Single Turn
- Horizontal or Vertical Mounting
- Open Frame
- $\pm 20 \%$ Tolerance


## SPECIFICATIONS

## General

Temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Total resistance values - 100 ohms to 2.0 megohms. EIA and IEC resistance values available as shown on page 165 .
Total resistance tolerances - $\pm 20$ percent standard. Other tolerances available. Consult factory.
Taper - Standard linear taper.
End resistance - Less than 2 ohms at both ends.

## Electrical

Power - 1.0 watt maximum at $+40^{\circ} \mathrm{C}$ or 0.5 watt maximum at $+70^{\circ} \mathrm{C}$ provided voltage rating is not exceeded.
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ to zero at $+125^{\circ} \mathrm{C}$. For rheostat applications derate directly with shaft or actuator position.
Voltage - 200 volts maximum working voltage (RMS or DC), or as determined by $\mathrm{E}_{\text {max. }}=\sqrt{\mathrm{PR}}$, whichever is less (at sea level).
Slider current - 100 mA (RMS or DC) maximum provided power rating is not exceeded.

## Operational

Contact resistance variation - Less than 3 percent of nominal resistance value, or 5 ohms, whichever is greater (MIL-R-22097 Pg. 4.6.4).
Load life - 2 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$ ( 1.5 hours "ON," 0.5 hour "OFF").
Rotational life - 3 percent maximum change in total resistance as a result of 200 cycles.

## Mechanical

Rotation - $270^{\circ}$ mechanical; $220^{\circ}$ electrical.
Turning torque -4 inch-ounces ( $28,2 \mathrm{mNm}$ ) maximum at $+25^{\circ} \mathrm{C}$.
Stop torque - 8 inch-ounces ( $56,0 \mathrm{mNm}$ ) minimum.
Terminals - Pin type on 0.100 inch ( $2,54 \mathrm{~mm}$ ) grid system for printed boards. Adequate strength for mounting without additional support.
Construction - Cermet element in an open type construction. The actuator is electrically connected to the number 2 terminal.
Weight - Less than 0.042 ounce ( $1,2 \mathrm{gm}$ ).
Marking - A-B monogram plus resistance value.

## Environmental

| PARAMETER | MAXIMUM CHANGE | TEST METHOD |
| :--- | :---: | :--- |
| Vibration | $1 \%$ Total Resistance | IEC $68-2-6$ (Procedure B4, 10 to $500 \mathrm{~Hz}, 10 \mathrm{G})$ |
| Bump | $2 \%$ Setting Stability |  |
| Damp Heat | $1 \%$ Total Resistance | IEC $68-2-29(4000$ bumps, 40G) |
| Solderability | $3 \%$ Setting Stability |  |
| Effect of Soldering | $1 \%$ Total Resistance | IEC $68-2-3$ |
| High Temperature Exposure | IEC $68-2-20$, Test T |  |
| Thermal Shock | $3 \%$ Total Resistance | IEC $68-2-20$, Test T |
| Temperature Coefficient | $1 \%$ Total Resistance | $\left(+125^{\circ} \mathrm{C}\right.$ for 1000 hours without load) |
|  | $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |  |

## Resistor Connections



## DIMENSIONS

## Top adjustment

Basic dimensions
TYPE 90H in inches.

Dimensions shown in parentheses are in millimeters.

TOLERANCE
Dimensional tolerance
$\pm .010(0,25)$
Except as specified.
NOT TO SCALE




## EXPLANATION OF PART NUMBERS

| Resistance <br> Value <br> (Ohms) | Top <br> Adjustment | Side <br> Adjustment |
| :---: | :---: | :---: |
| $\mathbf{1 0 0}$ | 90 H 1012 | 90 V 1012 |
| $\mathbf{2 0 0}$ | 90 H 2012 | 90 V 2012 |
| $\mathbf{5 0 0}$ | 90 H 5012 | 90 V 5012 |
| $\mathbf{1 0 0 0}$ | 90 H 1022 | 90 V 1022 |
| $\mathbf{2 0 0 0}$ | 90 H 2022 | 90 V 2022 |
| $\mathbf{5 0 0 0}$ | 90 H 5022 | 90 V 5022 |
| $\mathbf{1 0 K}$ | 90 H 1032 | 90 V 1032 |
| $\mathbf{2 0 K}$ | 90 H 2032 | 90 V 2032 |
| $\mathbf{5 0 K}$ | 90 H 5032 | 90 V 5032 |
| $\mathbf{1 0 0 K}$ | 90 H 1042 | 90 V 1042 |
| $\mathbf{2 0 0 K}$ | 90 H 2042 | 90 V 2042 |
| $\mathbf{5 0 0 K}$ | 90 H 5042 | 90 V 5042 |
| $\mathbf{1} \mathbf{~ M e g . ~}$ | 90 H 1052 | 90 V 1052 |
| $\mathbf{2 ~ M e g . ~}$ | 90 H 2052 | 90 V 2052 |

IEC RESISTANCE VALUES AVAILABLE BY SPECIAL ORDER

| OHMS $\pm \mathbf{2 0} \%$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 220 | 2.2 K | 22 K | 220 K |
| 470 | 4.7 K | 47 K | 470 K |

For other values consult factory


## SPECIFICATIONS

## General

Temperature range $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.
Total resistance values - 100 ohms to 5.0 megohms. EIA and IEC standard resistance values available as shown on Page 168. Other than preferred values are also available.
Total resistance tolerances - $\pm 20 \%$ or $\pm 10 \%$.
Tapers - Available in the following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| U | 100 Ohms to 5.0 Megohms |
| A, B, S, \& DB | 500 Ohms to 2.5 Megohms |
| See chart on Page 168 for explanation of tapers. |  |
| End resistance - At both ends less than one <br> percent of total resistance or "less than 15 ohms," <br> whichever is greater. |  |

## Electrical

Power - 0.25 watt maximum at $+70^{\circ} \mathrm{C}$ for " U " linear taper, provided voltage rating is not exceeded.
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ wattage to zero at $+120^{\circ} \mathrm{C}$. Derate 50 percent for " A " " B ", " S ", or "DB" tapers. For rheostat applications derate directly with shaft or actuator position.
Voltage -350 volts maximum working voltage within power rating limits.
0.25 Watt $\left(70^{\circ} \mathrm{C}\right)$
$1 / 2$ (0.50) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 100 Ohms to 5.0 Megohms

## FEATURES

- Hot-Molded Single Turn
- Pin or Solder Lug Terminals
- Horizontal or Vertical Mounting
- Immersion Sealed
- $\pm 20 \%$ or $\pm 10 \%$ Tolerance

Dielectric withstanding voltage -750 volts at sea level for one second.
Insulation resistance - 1000 megohms minimum.
Voltage characteristic -0.005 percent per volt or 0.5 ohm, whichever is greater.

## Operational

Contact resistance variation - Less than 3 percent of nominal total resistance value.
Load life - 10 percent maximum change in total resistance as a result of 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$. $(1.5$ hour "ON" - 0.5 hour "OFF.")
Rotational life - 10 percent maximum change in total resistance as a result of 5000 cycles under load.

## Mechanical

Rotation - $295^{\circ} \pm 5^{\circ}$.
Turning torque -0.25 to 3.0 inch-ounces ( 0,018 to $0,216 \mathrm{kgf}-\mathrm{cm})$ at $+25^{\circ} \mathrm{C}$.
Stop torque - Will withstand greater than 10 inchounces ( $0,72 \mathrm{kgf}-\mathrm{cm}$ ) shaft torque. (Mechanical specifications continued on Page 167.)

Hot-Molded Trimming
Potentiometers

## Mechanical

Backlash - Maximum of $3^{\circ}$.
Construction - Materials essentially nonmagnetic. Enclosure is immersion sealed. Terminals are treated for easy soldering.
Weight - Approximately 7 grams.

Marking - Allen-Bradley part number and nominal total resistance are marked in two lines. Other marking possible limited to two lines. On types FR, FC, FP and FM space permits 16 characters per line. On types FH and FS space permits 8 characters per line. A-B monogram plus "Type F" always included.

Environmental

| PARAMETER | MAXIMUM CHANGE | TEST METHOD |
| :--- | :---: | :---: |
| Vibration | 2\% Total Resistance | Method 204, Cond. C, MIL-STD-202 |
| 5\% Setting Stability |  |  |
| Shock | 2\% Total Resistance | Method 213, Cond. I, MIL-STD-202 |
| Moisture Resistance | 5\% Setting Stability |  |
| Effect of Soldering | 10\% Total Resistance | Method 106, MIL-STD-202 |
| Low Temperature Storage | $2 \%$ Total Resistance | MIL-R-94, Par. 4.6.6 |
| Low Temperature Operation | $2 \%$ Total Resistance | MIL-R-94, Par. 4.6.11 |
| Temperature Cycling | $3 \%$ Total Resistance | MIL-R-94, Par. 4.6.12 |

[^4]Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value.

| Degrees Celsius |  |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal <br> Resistance | $-55^{\circ}$ | $-25^{\circ}$ | $0^{\circ}$ | $+25^{\circ}$ | $+55^{\circ}$ | $+85^{\circ}$ | $+120^{\circ}$ |
| $\mathbf{1 0 0}$ Ohms | +4.5 | +2.5 | +1.5 | 0 | $\pm 1.0$ | $\pm 1.5$ | +3.5 |
| $\mathbf{1 0 0 0}$ Ohms | +5.5 | +3.0 | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | +4.5 |
| $\mathbf{1 0 , 0 0 0}$ Ohms | +7.0 | +3.5 | +2.0 | 0 | $\pm 1.0$ | $\pm 2.5$ | +5.5 |
| $\mathbf{1 0 0 , 0 0 0}$ Ohms | +8.0 | +4.0 | +2.0 | 0 | $\pm 1.5$ | $\pm 3.0$ | +6.0 |
| $\mathbf{1}$ Megohm | +10.0 | +5.0 | +2.5 | 0 | $\pm 1.5$ | $\pm 3.5$ | +7.5 |

For " S ", " B " and "DB" tapers multiply percentage ligures shown above by 1.25 .


| IEC RESISTANCE VALUES |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| OHMS $\pm \mathbf{1 0} \%- \pm \mathbf{2 0 \%}$ |  |  |  |  |
| AVAILABLE BY SPECIAL ORDER |  |  |  |  |
| 220 |  |  |  |  |
| 670 |  |  |  |  |

PREFERRED NOMINAL VALUES IN OHMS

| 100 | 1 K | 10 K | 100 K | 1.0 Meg. |
| :--- | ---: | ---: | ---: | :--- |
| 200 | 2 K | 20 K | 200 K | 2.0 Meg. |
| 250 | 2.5 K | 25 K | 250 K | 2.5 Meg. |
| 500 | 5 K | 50 K | 500 K | 5.0 Meg. |

## DIMENSIONS

TOLERANCES
Dimensional tolerance $\pm .016(0,40)$.
Angular tolerance $\pm 5^{\circ}$.
Except as specified.
NOT TO SCALE

TYPE FC


TYPE FH
TYPE FS



## Hot-Molded Trimming Potentiometers

## DIMENSIONS

TYPE FM
TYPE FP


## EXPLANATION OF PART NUMBERS




## Type <br> Hot-Molded Trimming Potentiometers

### 0.33 Watt $\left(50^{\circ} \mathrm{C}\right)$

## $1-1 / 4$ (1.25) Inch ( $31,75 \mathrm{~mm}$ ) Long Rectangular

## 100 Ohms to 2.5 Megohms

## FEATURES

- Hot-Molded Multi-Turn
- Pin Terminals
- 25 Turns
- Immersion Sealed
- $\pm 10 \%$ or $\pm 20 \%$ Tolerance


## SPECIFICATIONS

## General

Temperature range $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
Total resistance values -100 ohms to 2.5 megohms. EIA and IEC resistance values available as shown on page 172.
Total resistance tolerances $- \pm 10$ percent or $\pm 20$ percent.
End resistance - At both ends less than .004 percent of total resistance or "less than 20 ohms," whichever is greater.
Taper - Standard "U" linear taper.

## Electrical

Power -0.33 watt maximum at $+50^{\circ} \mathrm{C}$ provided voltage rating is not exceeded.
Power derating - Linearly with actuator position for rheostat usage.
Voltage - 300 volts RMS maximum within power rating limits.
Dielectric withstanding voltage -700 volts at sea level for one second.
Insulation resistance - 1000 megohms minimum.

## Operational

Contact resistance variation - Less than 2 percent of total resistance or 2 ohms, whichever is greater.
Load life - 10 percent maximum change in total resistance and 2 percent maximum change in setting stability as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$. ( 1.5 hour "ON" -0.5 hour "OFF.")
Rotational life -5 percent maximum change in total resistance as a result of 500 cycles $(25,000$ turns of actuator) under load.

## Mechanical

Number of turns $-25 \pm 3$ turns. Mechanical release at end positions. Resistance between terminals 1 and 2 increases with clockwise rotation.
Turning torque -0.10 to 8 inch-ounces ( 0,007 to $0,58 \mathrm{kgf} \cdot \mathrm{cm})$ at $+25^{\circ} \mathrm{C}$.
Construction - Materials are corrosion resistant and essentially non-magnetic. Enclosure is immersion sealed. Terminals are treated for easy soldering.
Weight - Approximately 3 grams.
Marking - Allen-Bradley part number and nominal total resistance are marked in two lines. Other marking possible, limited to maximum of 10 characters in each of two lines. A-B monogram plus "Type N " always included.

Hot-Molded Trimming
Potentiometers

Environmental

| PARAMETER | MAXIMUM CHANGE | TEST METHOD |
| :--- | :---: | :--- |
| Vibration | $3 \%$ Total Resistance | EIA Standard RS-186B, Method 7, |
|  | $3 \%$ Setting Stability | Type 1 and Method 8, Type 1 |
| Shock | $2 \%$ Total Resistance | Method 213, Cond. I, MIL-STD-202 |
|  | $2 \%$ Setting Stability |  |
| Humidity | $10 \%$ Total Resistance | Method 1, EIA Standard RS-186B |
| Corrosion Resistance | 96 Hour Test | Method 5, EIA Standard RS-186B |
| Effect of Soldering | $2 \%$ Total Resistance | MIL-R-22097 |
| High Temperature Exposure | $12 \%$ Total Resistance | 1,000 Hrs. at +100 ${ }^{\circ} \mathrm{C}$ |
| Low Temperature Operation | $2 \%$ Setting Stability |  |
| Temperature Cycling | $2 \%$ Total Resistance | MIL-R-22097 |
|  | $2 \%$ Setting Stability |  |
|  | $3 \%$ Total Resistance | Method 107, Cond. B, MIL-STD-202 |
|  | $2 \%$ Setting Stability |  |

NOTE: Unless otherwise specified, Terms, Definitions and Test Procedures are in accordance with Variable Resistive Components Institute Standards vrci-t-110 and vrci-215. Maximum environmental change is specified as 2 ohms on resistive values where 2 ohms exceeds the specified percentage change

Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value.

| Nominal <br> Resistance |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $-55^{\circ}$ | $-25^{\circ}$ | $0^{\circ}$ | $+25^{\circ}$ | $+55^{\circ}$ | $+85^{\circ}$ | $+100^{\circ}$ |
| $\mathbf{1 0 0}$ Ohms | +4.5 | +2.5 | +1.5 | 0 | $\pm 1.0$ | $\pm 1.5$ | +2.0 |
| $\mathbf{1 0 0 0}$ Ohms | +5.5 | +3.0 | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | +2.5 |
| $\mathbf{1 0 , 0 0 0}$ Ohms | +7.0 | +3.5 | +2.0 | 0 | $\pm 1.0$ | $\pm 2.5$ | +2.7 |
| $\mathbf{1 0 0}, \mathbf{0 0 0}$ Ohms | +8.0 | +4.0 | +2.0 | 0 | $\pm 1.5$ | $\pm 3.0$ | +3.2 |
| $\mathbf{1}$ Megohm | +10.0 | +5.0 | +2.5 | 0 | $\pm 1.5$ | $\pm 3.5$ | +4.0 |



Resistor Connections


## DIMENSIONS

Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters. Terminal spacing determined at mounting surface.

TOLERANCE
Dimensional tolerance $\pm .016(0,40)$.
Except as specified.
NOT TO SCALE


## EXPLANATION OF PART NUMBERS

| Resistance Value (Ohms) | Pin Terminals |  |
| :---: | :---: | :---: |
|  | Tolerance |  |
|  | $\pm 10 \%$ | $\pm 20 \%$ |
| 100 | NP101U | NP101M |
| 200 | NP201U | NP201M |
| 250 | NP251U | NP251M |
| 500 | NP501U | NP501M |
| 1 K | NP102U | NP102M |
| 2K | NP202U | NP202M |
| 2.5 K | NP252U | NP252M |
| 5K | NP502U | NP502M |
| 10K | NP103U | NP103M |
| 20K | NP203U | NP203M |
| 25K | NP253U | NP253M |
| 50K | NP503U | NP503M |
| 100K | NP104U | NP104M |
| 200K | NP204U | NP204M |
| 250K | NP254U | NP254M |
| 500K | NP504U | NP504M |
| 1.0 Meg. | NP105U | NP105M |
| 2.0 Meg. | NP205U | NP205M |
| 2.5 Meg . | NP255U | NP255M |

IEC RESISTANCE VALUES
AVAILABLE BY SPECIAL ORDER

| OHMS $\pm \mathbf{1 0 \%}- \pm \mathbf{2 0} \%$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 220 | 2.2 K | 22 K | 220 K | 2.2 M |
| 470 | 4.7 K | 47 K | 470 K |  |

For other values consult factory.


### 0.25 Watt $\left(70^{\circ} \mathrm{C}\right)$

$1-1 / 4$ (1.25) Inch ( $31,75 \mathrm{~mm}$ ) Long Rectangular 100 Ohms to 2.5 Megohms FEATURES

- Hot-Molded Multi-Turn
- Pin or Lug Terminals
- 25 Turns
- Immersion Sealed
- $\pm 10 \%$ or $\pm 20 \%$ Tolerance


## SPECIFICATIONS

## General

Temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Total resistance values -100 ohms to 2.5 megohms. EIA and IEC resistance values available as shown on page 176 .
Total resistance tolerances - $\pm 10$ percent or $\pm 20$ percent.
End resistance - At both ends less than . 004 percent of total resistance or "less than 20 ohms," whichever is greater.
Applicable military specification - Many of the Type RS trimming potentiometers can be ordered as Style RJ11 of MIL-R-22097.

## Electrical

Power -0.25 watt maximum at $+70^{\circ} \mathrm{C}$, derate to zero at $+125^{\circ} \mathrm{C}$.
Power derating - Linearly with actuator position for rheostat usage.
Voltage - 300 volts RMS maximum within power rating limits.
Dielectric withstanding voltage - 900 volts at sea level for one second.
Insulation resistance - 1000 megohms minimum.

## Operational

Contact resistance variation - Less than 2 percent of nominal total resistance value.
Load life - 10 percent maximum change in total resistance and 2 percent maximum change in setting stability as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$. ( 1.5 hour "ON" -0.5 hour "OFF.")
Rotational life - 5 percent maximum change in total resistance as a result of 500 cycles ( 25,000 turns of actuator) under load.

## Mechanical

Number of turns $-25 \pm 3$ turns. Mechanical release at end positions. Resistance between terminals 1 and 2 increases with clockwise rotation. Turning torque -0.10 to 8 inch-ounces ( 0,007 to $0,58 \mathrm{~kg}-\mathrm{cm})$ at $+25^{\circ} \mathrm{C}$.
Construction - Materials are corrosion resistant and essentially non-magnetic. Enclosure is immersion sealed. Terminals are treated for easy soldering.
Weight - Approximately 3 grams.
Marking - Allen-Bradley part number and nominal total resistance are marked in two lines. Other marking possible, limited to maximum of 9 characters in the first line and 8 characters in the second line. A-B monogram plus "Type R" always included.

## Hot-Molded

 Trimming Potentiometers
## Environmental

| PARAMETER | MAXIMUM CHANGE | TEST METHOD |
| :--- | :---: | :--- |
| Vibration | $2 \%$ Total Resistance | Method 204, Cond. D, MIL-STD-202 <br> (Type RK is Tested per Method 201) |
| Shock | $2 \%$ Setting Stability |  |

NOTE: Unless otherwise specified, Terms, Definitions and Test Procedures are in accordance with Variable Resistive Components Institute Standards vrci 110 and vrci-215. Maximum environmental change is specified as 2 ohms on resistive values where 2 ohms exceeds the specified percentage change.

Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value.

| Nominal <br> Resistance | Degrees Celsius |  |  |  |  |  |  | Resistor Connections |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $-55^{\circ}$ | $-25^{\circ}$ | $0^{\circ}$ | $+25^{\circ}$ | $+55^{\circ}$ | $+85^{\circ}$ | $+125^{\circ}$ |  |
| 100 Ohms | + 4.5 | +2.5 | $+1.5$ | 0 | $\pm 1.0$ | $\pm 1.5$ | $+4.0$ | \#1 ——mmимпп_ \#3 |
| 1000 Ohms | + 5.5 | +3.0 | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | $+4.5$ | 1 |
| 10,000 Ohms | + 7.0 | +3.5 | $+2.0$ | 0 | $\pm 1.0$ | $\pm 2.5$ | $+5.5$ | \#2 |
| 100,000 Ohms | +8.0 | $+4.0$ | +2.0 | 0 | $\pm 1.5$ | $\pm 3.0$ | +6.5 |  |
| 1 Megohm | +10.0 | +5.0 | +2.5 | , | $\pm 1.5$ | $\pm 3.5$ | +8.0 | CW $\longrightarrow$ |

Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters.
Terminal spacing determined at mounting surface.

TOLERANCE
Dimensional tolerance $\pm .016(0,40)$.
Except as specified.
NOT TO SCALE

## TYPE RP



TYPE RH


## TYPE RK


www.SteamPoweredRadio.Com

# Hot-Molded Trimming Potentiometers 

## EXPLANATION OF PART NUMBERS



TOTAL RESISTANCE VALUES
AND TOLERANCE
OHMS $\pm 10 \%- \pm 20 \%$

| 100 | 1 K | 10 K | 100 K | 1.0 Meg. |
| :--- | ---: | :--- | :--- | :--- |
| 200 | 2 K | 20 K | 200 K | 2.0 Meg. |
| 250 | 2.5 K | 25 K | 250 K | 2.5 Meg. |
| 500 | 5 K | 50 K | 500 K |  |

IEC RESISTANCE VALUES AVAILABLE BY SPECIAL ORDER

| OHMS $\pm \mathbf{1 0} \%- \pm \mathbf{2 0} \%$ |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| 220 | 2.2 K | 22 K | 220 K | 2.2 M |
| 470 | 4.7 K | 47 K | 470 K |  |

For other values consult factory.

## Hot-Molded Trimming Potentiometers



## SPECIFICATIONS

## General

Temperature range $--55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below. Other values available.

| OHMS |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
| 100 | 1 K | 10 K | 100 K | 1 Meg. |
| 200 | 2 K | 20 K | 200 K | $2 . \mathrm{Meg}$. |
| 250 | 2.5 K | 25 K | 250 K | 2.5 Meg |
| 500 | 5 K | 50 K | 500 K | 5 Meg. |

Total resistance tolerances $- \pm 20 \%$ or $\pm 10 \%$.
Tapers - (Resistance - rotation characteristics) - Available in the following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| $U$ | 100 Ohms to 5.0 Megohms |
| A, B, S, \& DB | 500 Ohms to 2.5 Megohms |

See chart on following pages for explanation of tapers. Special tapers, where practical, can be supplied.
End resistance - See chart on following pages.

## Electrical

Power - 0.25 watt maximum for " $U$ " linear taper at $+50^{\circ} \mathrm{C}$ provided voltage rating is not exceeded.
0.25 Watt ( $50^{\circ} \mathrm{C}$ )
$1 / 2$ (0.50) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 100 Ohms to 5.0 Megohms

## FEATURES

- Single Turn
- Pin or Solder Lug Terminals
- Thumbwheel or Screwdriver Adjustment
- Horizontal or Vertical Mounting
- $\pm 20 \%$ or $\pm 10 \%$ Tolerance

Power derating - Derate power linearly from $+50^{\circ} \mathrm{C}$ to zero at $+100^{\circ} \mathrm{C}$. Derate power 50 percent for resistors with "A", " $B$ ", " $S$ ", and "DB" tapers. For rheostat applications, derate power directly with shaft or actuator position.

Voltage - 350 volts maximum working voltage (RMS or DC), or as determined by $E_{\text {max }}=\sqrt{P R}$, whichever is less (at sea level).
Dielectric withstanding voltage - Will withstand a one second test of 750 volts (RMS or DC) at sea level or 350 volts (RMS or DC) at 3.4 inches ( $86,36 \mathrm{~mm}$ ) mercury.
Insulation resistance - 1000 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.
Voltage characteristic -0.005 percent per volt or 0.5 ohm , whichever is greater.

## Operational

Load life - 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+50^{\circ} \mathrm{C}$ ( 1.5 hour "ON", 0.5 hour "OFF").
Rotational life - Maximum change in total resistance as a result of 5000 cycles under load is 10 percent for values above 500 K ohms and less than 5 percent for values below 500 K ohms.

## Mechanical

Shafts - Thumbwheel or screwdriver adjustment, refer to DIMENSIONS on following pages.
Rotation - $295^{\circ}+5^{\circ}$.
Turning torque -0.25 to 3 inch-ounces ( 0,018 to $0,22 \mathrm{kgf}-\mathrm{cm})$ at $+25^{\circ} \mathrm{C}$.
Backlash - Maximum of 3 degrees.
Stop torque -2 inch-pounds ( $2,31 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Construction - Materials are corrosion resistant and essentially non-magnetic. Enclosure is dust and splash resistant. Terminals are treated for easy soldering.
Standard marking - Allen-Bradley part number and nominal resistance value. Other marking possible, limited to maximum of 16 characters in each of two lines for Types YR, YC and YN. 8 characters in each of two lines for Types YH and YS. A-B monogram plus "Type $Y$ " always included.

## Environmental

Vibration -3 percent maximum change in total resistance or setting. (Tested per EIA Standard RS186B, Method 7, Type I and Method 8, Type I.)
Shock, medium impact -3 percent maximum change in total resistance or setting after a $50 \mathrm{G}, 11$ millisecond test.
Effect of soldering - 2 percent maximum change in total resistance as a result of immersing the terminals in $+350^{\circ} \mathrm{C}$ solder to within 0.125 inch
$(3,18 \mathrm{~mm})$ of the resistor for a maximum of 3 seconds. (Tested per EIA Standard RS-186B, Method 10.)

Steady state humidity - Maximum temporary resistance change 10 percent. (Tested for 96 hours per EIA Standard RS-186B, Method 1.)
Salt spray - No evidence of corrosion damage. (Tested for 96 hours per EIA Standard RS-186B, Method 5, using Type $1[20 \%$ ] salt solution.)
Temperature cycling -3 percent maximum change in total resistance as a result of the temperature cycling test. (Five cycles $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.)
Low temperature operation - 2 percent maximum change in total resistance as a result of the low temperature operation test. ( $-55^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load.)
Low temperature storage -2 percent maximum change in the total resistance as a result of the storage test. ( 24 hours at $-63^{\circ} \mathrm{C}$.)
Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See table below.

| Nominal Resistance | Degrees Celsius - "U" Linear Taper |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $55^{\circ}$ | $25^{\circ}$ | $0^{\circ}$ | $+25^{\circ}$ | +55 ${ }^{\circ}$ | $+85^{\circ}$ | $+100^{\circ}$ |
| 100 Ohms | +4.5 | +2.5 | +1.5 | 0 | $\pm 1.0$ | $\pm 1.5$ | $+2.0$ |
| 1,000 Ohms | + 5.5 | +3.0 | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | $+2.5$ |
| 10,000 Ohms | + 7.0 | +3.5 | +2.0 | 0 | $\pm 1.0$ | +2.5 | +2.7 |
| 100,000 Ohms | +8.0 | + 4.0 | +2.0 | 0 | $\pm 1.5$ | $\pm 3.0$ | + 3.2 |
| 1 Megohm | +10.0 | +5.0 | +2.5 | 0 | $\pm 1.5$ | $\pm 3.5$ | $+4.0$ |

For " S ", " A ", " B " and " DB " tapers multiply percentage figures shown above by 1.25 .

## Ordering information

1. Type (YR, YC, YH, YS or YN).
2. Taper.
3. Total resistance vlaue in ohms.
4. Total resistance tolerance.
5. Your part number.
6. Marking.
7. YN - unless otherwise specified the 3 spacers will be provided (see YN back page).

## Taper data

TAPERS


END RESISTANCE

| TAPER | MINIMUM RESISTANCE BETWEEN TERMINALS 1 and 2 | MINIMUM RESISTANCE BETWEEN TERMINALS 2 and 3 |
| :---: | :---: | :---: |
| U \& S | [1 | [1] |
| A | 星 | a |
| B | 12 | [10 |
| DB | 3 | 2 |

n "Less than $.004 \%$ of total resistance," or "less than 15 ohms" whichever is greater.
a "Less than $1 \%$ of total resistance," or "less than 15 ohms" whichever is greater.
a Less than 15 ohms.


## DIMENSIONS

Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters. Terminal spacing determined at mounting surface.

## TYPE YR



TYPE YC



## TOLERANCES

Dimensional tolerance $\pm .016(0,40)$
Angular tolerance $\pm 5^{\circ}$
Except as specified.
NOT TO SCALE


## DIMENSIONS



## EXPLANATION OF PART NUMBERS



Type FD Hot-Molded Trimming Potentiometers

0.25 Watt $\left(70^{\circ} \mathrm{C}\right)$
$1 / 2(0.50)$ Inch $(12,70 \mathrm{~mm})$ Diameter
100 Ohms to 5.0 Megohms
FEATURES

- Hot-Molded Single Turn
- Dual Trimmer
- Attenuator Applications Bridged-T or L Pads
- Immersion Sealed
- $\pm 20 \%$ or $\pm 10 \%$ Tolerance


## SPECIFICATIONS

## General

Temperature range $--55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.
Total resistance values - Preferred nominal values listed below. Other values available.

## OHMS

| 100 | 1 K | 10 K | 100 K | 1 Meg. |
| :---: | ---: | ---: | ---: | ---: |
| 200 | 2 K | 20 K | 200 K | 2 Meg. |
| 250 | 2.5 K | 25 K | 250 K | 2.5 Meg. |
| 500 | 5 K | 50 K | 500 K | 5 Meg. |

Total resistance tolerances - $\pm 20 \%$ or $\pm 10 \%$.
Tapers - (Resistance - rotation characteristics) - Available in the following resistance ranges:

| TAPER | TOTAL RESISTANCE RANGE |
| :---: | :---: |
| U | 100 Ohms to 5.0 Megohms |
| A, B, S \& DB | 500 Ohms to 2.5 Megohms |

See chart on following pages for explanation of tapers. Special tapers, where practical, can be supplied.
End resistance - See chart on following pages.
Attenuators - See Allen-Bradley Publication EC5930-2.1

## Electrical

Power - Maximum power ratings for "U" linear tapers at $+70^{\circ} \mathrm{C}$ with both elements in the circuit are as follows:

|  | WATTS |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Front Resistor | 0.25 | 0.23 | 0.2 | 0.18 | 0.15 | 0.1 | 0 |
| Rear Resistor | 0 | 0.1 | 0.15 | 0.18 | 0.2 | 0.23 | 0.25 |

(Front resistor is adjacent to the actuator. Voltage rating must not be exceeded.)
Power derating - Derate power linearly from $+70^{\circ} \mathrm{C}$ to zero at $+120^{\circ} \mathrm{C}$. Derate power 50 percent for non-metallic mounting or for resistors with "A", "B", " S ", and "DB" tapers. For rheostat applications, derate power directly with shaft or actuator position.
Voltage - 350 volts maximum working voltage (RMS or DC), or as determined by $E_{\text {max }}=\sqrt{P R}$, whichever is less (at sea level).
Dielectric withstanding voltage - Will withstand a one second test of 750 volts (RMS or DC) at sea level or 350 volts (RMS or DC) at 3.4 inches $(86,36 \mathrm{~mm})$ mercury .
Insulation resistance - 1000 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.
Voltage characteristic -0.005 percent per volt or 0.5 ohm , whichever is greater.

## Operational

Load life - 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ} \mathrm{C}$ ( 1.5 hour "ON," 0.5 hour "OFF"). (Operational specifications continued on next page.)

## Hot-Molded Trimming <br> Potentiometers

Rotational life - 10 percent maximum change in total resistance as a result of 50,000 cycles under load.

## Mechanical

Shafts - Flush or extended 0.125 inch ( $3,18 \mathrm{~mm}$ ) above face plate (see dimensions on following page).
Rotation- $295^{\circ} \pm 5^{\circ}$.
Turning torque -0.5 to 4.5 inch-ounces ( 0,036 to $0,32 \mathrm{kgf}-\mathrm{cm}$ ) at $+25^{\circ} \mathrm{C}$ and 13 inch-ounces ( $0,94 \mathrm{kgf}$ cm ) maximum at $-55^{\circ} \mathrm{C}$.
Backlash - Maximum of 3 degrees.
Stop torque -1 inch-pound ( $1,15 \mathrm{kgf}-\mathrm{cm}$ ) minimum.
Construction - Materials are corrosion resistant and essentially non-magnetic. Enclosure is immersion sealed. Terminals are treated for easy soldering.
Weight - Approximately 7 grams.
Standard marking - Allen-Bradley part number and nominal total resistance are marked in two lines. Other marking possible, limited to a maximum of 16 characters in each of two lines. A-B monogram plus "Type FD" always included.

## Environmental

Vibration -2 percent maximum change in total resistance, 5 percent maximum change in resistance setting. (Tested per method 204, condition "C" of MIL-STD-202.)
Shock -2 percent maximum change in total resistance. 5 percent maximum change in resistance
settings. (Tested per method 213, condition " T " of MIL-STD-202.)
Effect of soldering -2 percent maximum change in total resistance as a result of immersing the terminals in $350^{\circ} \mathrm{C}$ solder to within 0.125 inch $(3,18 \mathrm{~mm})$ of the resistor for 5 seconds. Moisture resistance -10 percent maximum change in total resistance. (Method 106 of MIL-STD-202.)
Corrosion resistance - Materials show no corrosion after the 200 hour test. (Method 101 of MIL-STD-202.)
Temperature cycling -3 percent maximum change in total resistance as a result of the temperature cycling test. (Five cycles at $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.)
Low temperature operation -2 percent maximum change in total resistance as a result of the low temperature operation test. ( $-55^{\circ} \mathrm{C}$ for two hours without load and 45 minutes with rated load.)
Temperature characteristics - Maximum percent temporary total resistance change from the $+25^{\circ} \mathrm{C}$ value. See table below.

| Nominal <br> Resistance | Degrees Celsius - "U" Linear Taper |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{- 5 5 ^ { \circ }}$ | $-\mathbf{2 5}$ | $\mathbf{0}^{\circ}$ | $+\mathbf{2 5}$ | $+\mathbf{5 5 ^ { \circ }}$ | $+\mathbf{8 5 ^ { \circ }}$ | $+\mathbf{1 2 0}$ |
| $\mathbf{1 0 0}$ Ohms | +4.5 | +2.5 | +1.5 | 0 | $\pm 1.0$ | $\pm 1.5$ | +3.5 |
| $\mathbf{1 , 0 0 0}$ Ohms | +5.5 | +3.0 | +1.5 | 0 | $\pm 1.0$ | $\pm 2.0$ | +4.5 |
| $\mathbf{1 0 , 0 0 0}$ Ohms | +7.0 | +3.5 | +2.0 | 0 | $\pm 1.0$ | $\pm 2.5$ | +5.5 |
| $\mathbf{1 0 0 , 0 0 0}$ Ohms | +8.0 | +4.0 | +2.0 | 0 | $\pm 1.5$ | $\pm 3.0$ | +6.0 |
| $\mathbf{1 ~ M e g o h m m}$ | +10.0 | +5.0 | +2.5 | 0 | $\pm 1.5$ | $\pm 3.5$ | +7.5 |

For " S ", " A ", " B " and "DB" tapers multiply percentage figures shown above by 1.25 .

## Ordering information

1. Type (FDE, FDL, FDP or FDT),
2. Taper.
3. Total resistance value in ohms.
4. Total resistance tolerance.
5. Your part number.
6. Marking
7. Remarks

END RESISTANCE

| TAPER | MINIMUM <br> RESISTANCE <br> BETWEEN <br> TERMINALS <br> 1 and 2 | MINIMUM <br> RESISTANCE <br> BETWEEN <br> TERMINALS <br> 2 and 3 |
| :---: | :---: | :---: |
| U \& S | $\square$ | $\square$ |
| A | B | $\mathbf{n}$ |
| B | $\mathbf{2}$ | $\square$ |
| DB | $\mathbf{3}$ | $\mathbf{n}$ |

- "Less than $.004 \%$ of total resistance," or "less than 15 ohms" whichever is greater. 2 "Less than $1 \%$ of total resistance," or "less than 15 ohms" whichever is greater.
3 Less than 15 ohms.




## DIMENSIONS

TYPE FDE


## TYPE FDT

Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters.
TOLERANCES
Dimensional tolerance
$\pm .016(0,40)$
Angular tolerance $\pm 5^{\circ}$
Except as specified.
NOT TO SCALE

# Hot-Molded Trimming Potentiometers 

## EXPLANATION OF PART NUMBERS



## Electrical Specifications

Taper Type and
Total Resistance Tolerance
U - Linear (U), $\pm 10 \%$
M - Linear (U), $\pm 20 \%$
A - Clockwise Modified Logarithmic (A),$\pm 10 \%$
R - Clockwise Modified Logarithmic (A) $\pm 20 \%$
B - Counterclockwise Modified Logarithmic (B), $\pm 10 \%$
T - Counterclockwise Modified Logarithmic (B), $\pm 20 \%$
D - Clockwise Exact Logarithmic (DB),$\pm 10 \%$
K - Clockwise Exact Logarithmic (DB), $\pm 20 \%$
S - Modified Linear (S), $\pm 10 \%$
Y - Modified Linear (S), $\pm 20 \%$
E - L•Pad Attenuator, $\pm 15 \%$
L - L-Pad Attenuator, $\pm 20 \%$
N - Bridged T-Pad Attenuator $\pm 15 \%$
P - Bridged T-Pad Attenuator, $\pm 20 \%$

CAUTION: Part number format does not allow for exclusion of invalid mechanical and/or electrical combinations. Check parameter limits in preceding text.


# adjustable attenuators 

## HOT-MOLDED <br> COMPOSITION

comprehensive product index

| DESCRIPTION | TYPE | PAGE |
| :---: | :---: | :---: |
| HOT-MOLDED COMPOSITION |  |  |
| 1/2 (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter -Bridged-T-Pads 0.25 Watt ( $50^{\circ} \mathrm{C}$ ) | Type BT | 192 |
| $1 / 2(0.5)$ Inch ( $12,70 \mathrm{~mm}$ ) Diameter -Bridged-T-Pads 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) L-Pads 0.25 Watt $\left(70^{\circ} \mathrm{C}\right)$ | Type FD | 196 |
| $1 / 2$ (0.5) Inch ( $12,70 \mathrm{~mm}$ ) Diameter -Bridged-T-Pads 1.0 Watt $\left(70^{\circ} \mathrm{C}\right)$ L-Pads 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) | Type GD | 196 |
| $5 / 8(0.625)$ Inch $(15,88 \mathrm{~mm})$ Square - <br> Bridged-T-Pads 1.0 Watt ( $70^{\circ} \mathrm{C}$ ) <br> Bridged-H-Pads 1.0 Watt ( $70^{\circ} \mathrm{C}$ ) <br> L-Pads 0.5 Watt ( $70^{\circ} \mathrm{C}$ ) <br> Straight-T-Pads 0.5 Watt $\left(70^{\circ} \mathrm{C}\right)$ | MOD POT* | 142 |
| 1-5/32 (1.156) Inch (29,36 mm) Diameter - <br> Bridged-T-Pads 5 Watts ( $70^{\circ} \mathrm{C}$ ) <br> Bridged-H-Pads 5 Watts $\left(70^{\circ} \mathrm{C}\right)$ <br> L-Pads 2.25 Watts $\left(70^{\circ} \mathrm{C}\right)$ <br> Straight-T-Pads 2.25 Watts $\left(70^{\circ} \mathrm{C}\right)$ | Type J | 188 |

## adjustable attenuators

SELECTOR GUIDE

| Type | Page Number | Resistance Element | Characteristic Impedance and Tolerance | Number of Sections Available | Voltage Rating (RMS or DC) | Operating Temperature Range | $\begin{gathered} \text { Case Dimensions } \\ \text { In Inches } \\ \text { (Millimeters) } \\ \hline \end{gathered}$ | Enclosure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BT | 192 | Hot-Molded Carbon Composition | $\begin{aligned} & 75 \mathrm{Ohms} \\ & \pm 20 \% \end{aligned}$ | 2 | 4.33 V | $-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ | $0.500(12,70)$ Diameter by $0.535(13,59)$ | Dust and Splash Resistant |
| FD | 196 |  | $\begin{gathered} 50,75,100 \\ 150,300 \\ \text { and } 600 \\ \text { Ohms } \\ \pm 20 \% \\ \text { and } \\ \pm 15 \% \end{gathered}$ | 2 | 350 V | $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ | $\begin{aligned} & \hline 0.500(12,70) \\ & \text { Diameter by } \\ & 0.688(17,46) \\ & \hline \end{aligned}$ | Immersion Sealed |
| GD | 196 |  |  | 2 |  |  | $0.500(12,70)$ Diameter by $0.547(13,89)$ |  |
| J | 188 |  |  | 2 or 3 | 500 V |  | $1.156(29,36)$ <br> Diameter by <br> $1.266(32,15)$ <br> (Dual Section) | Dust and Splash |
| MOD POT* | 142 |  |  |  | 350 V |  | $.625(15,88)$ <br> Square by $.969(24,61)$ <br> Dual Section <br> Lug Terminal | Resistant |

Availabie as Bridged-T Pads only.

| Type | POWER RATING |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Bridged-T | Bridged-H | L | Straight-T |
| BT | $\begin{gathered} \text { 0.25 Watt } \\ \text { at } \\ 50^{\circ} \mathrm{C} \end{gathered}$ | - | - | - |
| FD | 0.5 Watt at $70^{\circ} \mathrm{C}$ | - | $\begin{gathered} 0.25 \text { Watt } \\ \text { at } \\ 70^{\circ} \mathrm{C} \\ \hline \end{gathered}$ | - |
| GD | 1.0 Watt at $70^{\circ} \mathrm{C}$ | - | $\begin{gathered} \text { 0.5 Watt } \\ \text { at } \\ 70^{\circ} \mathrm{C} \\ \hline \end{gathered}$ | - |
| J | $5 \text { Watts at } 70^{\circ} \mathrm{C}$ |  | 2.25 Watts at $70^{\circ} \mathrm{C}$ |  |
| MOD POT* | 1.0 Watt at $70^{\circ} \mathrm{C}$ |  | 0.5 Watt at $70^{\circ} \mathrm{C}$ |  |



## SPECIFICATIONS

## General

Characteristic impedance values - Preferred impedance values are listed below. Other values are available on special order.

| 50 Ohms | 100 Ohms | 300 Ohms |
| :--- | :--- | :--- |
| 75 Ohms | 150 Ohms | 600 Ohms |

Tolerances on characteristic impedance Standard tolerances $\pm 20$ percent and $\pm 15$ percent. A tolerance of $\pm 10$ percent is available on special basis, depending on type, impedance value and the required attenuation. Consult factory for analysis in individual cases. When tested for overall tolerance at the factory, the fixed resistors used in the test circuit are all $\pm 0.25$ percent resistors.
Recommended characteristic impedance test The characteristic impedance is measured by connecting the variable resistors in the circuit, shown on next page including a load resistor that is equal to the characteristic impedance. The characteristic impedance is measured between points " A " and " $B$ ". For controls with a limited attenuation, a specified series fixed resistor must be placed between points " C " and " D ". When tested at the factory, the fixed resistors have a tolerance of $\pm 0.25$ percent.
Attenuation and insertion loss - The graphs on the following pages show the characteristics of standard attenuators.
Special attenuation characteristics - Special attenuators can be supplied where the total attenuation is less than the standard value. A series fixed resistor will be required in the shunt section.
Switches - SPST switch is available only with L and Bridged-T attenuator types. Switch is UL approved.

Type

## Hot-Molded Adjustable Atfenuators

## 4 Attenuator Types

50 Ohms to 2500 Ohms

- 100,000 Cycle Rotational Life
- SPST Switch Available - UL Approved


## Electrical

Power handling capacity - The maximum power handling capacities given below are based on any shaft position with the attenuators mounted on a 4 -inch square 16 gauge steel panel or equivalent. Derate 50 percent for mounting on non-metallic panel. Derate linearly to zero at $+120^{\circ} \mathrm{C}$.

| Attenuator <br> Type | Maximum Load <br> at $+\mathbf{7 0}$ <br>  <br>  <br> Bridged-T |
| :---: | :---: |
| 5 Watts |  |
| Bridged-H | 5 Watts |
| L | 2.25 Watts |
| Straight-T | 2.25 Watts |

## Operational

Load life - Operated at rated power for 1,000 hours, the characteristic impedance will be within 10 percent of its initial value.
Rotational life - Characteristic impedance is within 10 percent of its initial value after 100,000 rotational cycles.

## Mechanical

Mechanical configurations - Allen-Bradley panel potentiometers for attenuators are available in all the same mechanical configurations as the Type J. Refer to Publication EC5607-2.1.
Fixed resistors - Attenuators are furnished without fixed resistors.
Wiring - No interconnections are made at the factory. Refer to following page for wiring.

## AB <br> cuality <br> Hot-Molded Adjustable Attenuators

## Ordering information

Below is a checklist of data needed to fill an order for Type J panel potentiometers intended for attenuator use. Please refer to Publication EC5607-2.1 for details.

1. Type of attenuator.
2. Attenuation characteristic (A-B Standard or Other).
3. Characteristic impedance in ohms.
4. Tolerance on characteristic impedance $\pm 20 \%, \pm 15 \%$ or $\pm 10 \%$.
5. Bushing type (Plain, Locking, Shaft Watertight or Shaft and Panel Watertight).
6. Bushing length in inches.
7. Shaft ending (Plain, Slotted or Flatted).
8. Shaft length from mounting surface in inches.
9. Is switch required?
10. Locating lug option (1, 2, 3, or 4).
11. Mounting hardware (A-B Standard or Other).
12. Part number you have assigned, if any.
13. Marking required on the part.
14. Special features.
15. Remarks.

## RECOMMENDED WIRING

## Standard attenuators




STRAIGHT-T


Standard total attenuation for attenuators


Standard maximum insertion loss for attenuators


## GRAPHS

## Standard nominal attenuation characteristics



# Hot-Molded Adjustable Attenuators 


0.25 Watt $\left(50^{\circ} \mathrm{C}\right)$
$1 / 2$ (0.50) Inch ( $12,70 \mathrm{~mm}$ ) Diameter 75 Ohms
FEATURES

- Hot-Molded Single Turn
- 2 Attenuator Types
- $-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
- Dust and Splash Resistant
- $\pm 20 \%$ or $\pm 15 \%$ Tolerance


## SPECIFICATIONS

## General

Temperature range $-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.
Application - For use as 75 -ohm Bridged-T attenuator.
Standard characteristic impedance value Standard impedance value 75 ohms.
Tolerance on characteristic impedance Standard tolerances $\pm 20$ or $\pm 15$ percent over entire rotation; from end to end. When tested for overall tolerance at the factory, the fixed resistors used in the test circuit are all $\pm 0.25$ percent resistors. All measurements are made at DC.
Recommended characteristic impedance test The characteristic impedance is measured by connecting the variable resistors into the circuit as shown on the following pages, including a load resistor that is equal to the characteristic impedance. The characteristic impedance is then measured between points $A$ and $B$ with an ohmmeter. When tested at the factory, the fixed resistors have a tolerance of $\pm 0.25$ percent.
Altenuation and insertion loss - When measured in the recommended circuit, the attenuation at the CCW end of rotation shall be 20 dB minimum. The insertion loss at the CW end of rotation shall be 1.0 dB maximum. All measurements are made at DC.
Wiring - To provide complete attenuator networks, the variable resistors described in this publication require some form of interconnection. To permit additional wiring at the time of installation, no interconnections are made at the factory.

Fixed resistors - Bridged-T attenuators require fixed resistances to complete the attenuator circuit. Attenuators are furnished without resistors to keep the solder lugs free to accommodate additional wiring that may be made at the time of installation. Also, the choice of tolerance, wattage rating, and type of fixed resistor is fully within the user's control.

## Electrical

Power handling capacity - The maximum power handling capacity is 0.25 watt at $+50^{\circ} \mathrm{C}$ and is based on any shaft position. Derate linearly to zero at $+120^{\circ} \mathrm{C}$.
Voltage -4.33 volts maximum working voltage (RMS or DC).
Dielectric withstanding voltage - Will withstand a one second test of 500 volts (RMS or DC) at sea level, $+25^{\circ} \mathrm{C}$.
Insulation resistance - 100 megohms minimum for clean and dry conditions at $+25^{\circ} \mathrm{C}$.

## Operational

Rotational life - Less than 10 percent change of characteristic impedance as a result of a 5000 cycle life test. No load.
Load life - Less than 10 percent change of characteristic impedance as a result of the load life test. Tested per EIA Standard RS-186D, Method 12; 1000 hours, $+50^{\circ} \pm 2^{\circ} \mathrm{C}$ ambient temperature with rated load applied 1.5 hours "ON", 0.5 hour "OFF".

## Hot-Molded Adjustable Attenuators

## Mechanical

Shafts - Shaft length .031 inch $(0,80 \mathrm{~mm})$ minimum to .500 inch ( $12,70 \mathrm{~mm}$ ) maximum (see dimensions on next page).
Rotation - $295^{\circ} \pm 5^{\circ}$ mechanical.
Turning torque -0.5 to 5.0 inch-ounces ( 0,036 to $0,36 \mathrm{kgf}-\mathrm{cm}$ ) at $+25^{\circ} \mathrm{C}$ and 13 inch-ounces ( $0,94 \mathrm{kgf}$ cm ) maximum at $-40^{\circ} \mathrm{C}$.
Stop torque -10 inch-ounces ( $0,72 \mathrm{~kg}-\mathrm{cm}$ ) minimum.
Construction - Materials are essentially nonmagnetic. Enclosure is dust and splash resistant. Terminals are treated for easy soldering.
Marking - Allen-Bradley part number and nominal characteristic impedance value are marked in two lines. Other marking possible, limited to a maximum of 13 characters in each of two lines including spacings, placed 13 to a line on the side of the enclosure. A-B monogram plus "TYPE BT" always included.

## Environmental

Vibration - Less than 10 percent change of characteristic impedance. (Tested per EIA Standard RS-186D, Method 7, Type III.)

Steady state humidity - Less than 10 percent temporary change of characteristic impedance. (Tested for 96 hours per EIA Standard RS-186D, Method 1.)
Temperature cycling - Less than 10 percent change of characteristic impedance. (Tested per EIA Standard RS-186D, Method 11, except low temperature $-40^{\circ} \mathrm{C}$ and high temperature $+120^{\circ} \mathrm{C}$ ).
High temperature exposure - Less than 10 percent change of characteristic impedance. (Tested for 1000 hours at $+120^{\circ} \mathrm{C}$ per EIA Standard RS-186D, Method 12.) No load.
Low temperature operation - Less than 10 percent change of characteristic impedance as a result of the low temperature operation test ( $-40^{\circ} \mathrm{C}$ for 2 hours without load and 45 minutes with rated load).
Low temperature storage - Less than 10 percent change of characteristic impedance as a result of the low temperature storage test ( 24 hours at $-40^{\circ} \mathrm{C}$ ).

## Ordering information

1. Type (BT2 or BT4).
2. Shaft length and material - (plastic or metal).
3. Part number you have assigned, if any.
4. Marking required on the part.
5. Remarks.

## RECOMMENDED WIRING

## Bridged-T attenuators



[^5]
## DIMENSIONS

Basic dimensions in inches.
Dimensions shown in parentheses are in millimeters.
Terminal spacing determined at mounting surface.

## TOLERANCE

Dimensional tolerance $\pm .016(0,40)$
Except as specified.
NOT TO SCALE


Aviatian of Pin Terminals
$10.100 / 2.54 /$ Primes Cercuit Specing



Solder lug terminals have a $031 \times .094(0,80 \times 2,38)$ slot which accommodates 2 solid No. 20 or 3 solid No. 21 wires. Terminals are $.065=, 005,11,65+0.13)$ Wide, $.015=.005$ $10,38+0,13$ ) Thick.


SHAFT LENGTHS AND MATERIAL

| Plastic |  | Metal |  |
| :---: | :---: | :---: | :---: |
| Inch | Millimeters | Inch | Millimeters |
| .031 | 0,80 | - | - |
| .125 | 3,18 | .125 | 3,18 |
| .250 | 6,35 | .250 | 6,35 |
| .375 | 9,52 | .375 | 9,52 |
| .500 | 12,70 | .500 | 12,70 |

SCREWDRIVER SLOTS

| Plastic | Metal |  |
| :---: | :---: | :---: |
| $.031 \pm .005$ | Wide | $.031 \pm .005$ |
| $(0,80 \pm 0,13)$ |  | Wide |
| $.040 \pm .005$ | Deep | $.031+.010$ |
| $(1,02 \pm 0,13)$ |  |  |
|  |  | $(0,80+0,25)$ |
|  |  | Deep |
|  |  |  |

## Hot-Molded Adjustable Attenuators

## EXPLANATION OF PART NUMBERS




## SPECIFICATIONS

## General

Characteristic impedance values - Preferred impedance values are listed below. Other values are available.

| 50 Ohms a | 100 Ohms | 300 Ohms |
| :--- | :--- | :--- |
| 75 Ohms | 150 Ohms | 600 Ohms |

1 Available in Bridged-T Pads only.
Tolerances on characteristic impedance Standard tolerance $\pm 20$ and $\pm 15$ percent. When tested for overall tolerance at the factory, the fixed resistors used in the test circuit are all $\pm 0.25$ percent resistors.
Recommended characteristic impedance test The characteristic impedance is measured by connecting the variable resistors into the circuit as shown on the next page, including a load resistor that is equal to the characteristic impedance. The characteristic impedance is then measured between points ' $A$ ' and ' $B$ ' with an ohmmeter. For controls with a limited attenuation, a specified series fixed resistor must be placed between points ' $C$ ' and ' $D$ '. When tested at the factory, the fixed resistors have a tolerance of $\pm 0.25$ percent.
Attenuation and insertion loss - The graphs on the following pages show the characteristics of standard attenuators.
Special attenuation characteristics - Special attenuators can be supplied where the total attenuation is less than the standard value. A series fixed resistor will be required in the shunt section.

## Hot-Molded Adjustable Atrenuators

## 2 Attenuator Types

50 Ohms to 2500 Ohms

## FEATURES

- $\pm 20 \%$ or $\pm 10 \%$ Tolerance
- Hot-Molded Composition
- $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$


## Electrical

Power handling capacity - The maximum power handling capacities given below are based on any shaft position. Derate linearly to zero at $+120^{\circ} \mathrm{C}$. Type GD power rating is based on being mounted on a 4 -inch ( $101,60 \mathrm{~mm}$ ) square, .062 inch ( $1,57 \mathrm{~mm}$ ) thick steel panel or equivalent; derate 50 percent for mounting on non-metallic panel.

$$
\text { Power Rating at }+70^{\circ} \mathrm{C}
$$

| Circuit | Type FD | Type GD |
| :---: | :---: | :---: |
| Bridged-T | 0.5 watt | 1 watt |
| L | 0.25 watt | 0.5 watt |

## Operational

Load life - Less than 10 percent change of characteristic impedance as a result of the load life test. 1000 hours ( 1.5 hours "ON", 0.5 hour "OFF") at rated load.
Rotational life - Less than 10 percent change of characteristic impedance as a result of a 5000 cycle life test for the Type FD and 50,000 cycle life test for the Type GD.

## Hot-Molded Adjustable Attenuators

## Ordering information

Below is a checklist of data needed to fill an order for variable attenuators. Refer to Technical Publications EC5630-2.1 and EC5838-2.1

1. Type of control (Type GD, FDP, FDL, FDE, or FDT).
2. Type of attenuator (Bridged-T Pad or L-Pad).
3. Attenuation characteristic (A-B Standard or Other).
4. Characteristic impedance in ohms.
5. Tolerance on characteristic impedance $\pm 20 \%$, or $\pm 15 \%$.
6. Bushing type (Type GD only). (Plain, Locking, Plain Panel Watertight, or Locking Panel Watertight).
7. Bushing length in inches or millimeters (Type GD only).
8. Shaft ending (Type GD only) (Plain, Slotted or Flatted).
9. Shaft length from mounting surface in inches or millimeters (Type GD only).
10. Locating lug option (Type GD only) (Option 1 or 4).
11. Mounting hardware (Type GD only) (A-B Standard or Other).
12. Part number you have assigned, if any.
13. Marking required on the part.
14. Special features.
15. Remarks.

## RECOMMENDED WIRING

## Standard attenuators



## ${ }^{\text {trex } F D, G D}$

GRAPHS
Standard total attenuation for attenuators


Standard maximum insertion loss for attenuators

Attenuation in Decibels
Percent of Input Voltage at Output


## terms of sale

General - No addition to or modification of any of the Terms and Conditions of Sale as they appear herein for product sales of Allen-Bradley Company (Allen-Bradley) shall be binding upon Allen-Bradley unless signed in writing by a duly authorized representative at Allen-Bradley Headquarters.
Terms - Terms to customers of satisfactory credit are $1 \%, 10$ th and 25 th, 30 days net from date of invoice. To avoid delay in filling orders, purchasers without previous experience with the Allen-Bradley Company should include credit references with their first order, or remit cash.
Minimum Billing Charge - Minimum order billing $\$ 100.00$. Minimum item billing $\$ 35.00$ per shipment.
Shipping Terms - F.O.B. Factory. Buyer to pay all transportation.
Over/Under Shipments - The contract quantity for each line item will be satisfied when the quantity shipped is within plus or minus five percent $\left(5^{\circ} \ldots\right)$ of the actual quantity order. The quantity billed will be the actual quantity shipped.
Shipment - Shipment shall be F.O.B. AllenBradley's factory, warehouse or other point of shipment by Allen-Bradley. Scheduled or stipulated shipping dates are approximate and based upon prompt receipt of all necessary information from Buyer.
Allen-Bradley shall not be liable for any loss, damage or delay in delivery due to causes beyond its reasonable control, or acts of God, acts of the buyer, acts of civil or military authority, fires, strikes, floods, epidemics, quarantine restrictions, war, riots, delays in transportation, transportation embargoes, or inability due to causes beyond its reasonable control to obtain necessary engineering talent, labor, materials or manufacturing facilities. In the event of such delay, the delivery date shall be extended for that length of time as may be reasonably necessary to compensate for the delay.
Responsibility and Title - Title in the equipment shall remain with Allen-Bradley as security only and until full payment therefor. Risk of loss for the equipment shall pass to Buyer upon shipment from F.O.B. point.

Export Packing - Allen-Bradley will supply equipment for under-deck overseas shipment packed in accordance with its regular export standard, at no additional charge to Buyer. Where such packing for export must conform to definite specifications that differ from the Allen-Bradley standard, the Buyer will be charged for the extra cost thus incurred.

Damage Claims - All claims for breakage and damage whether concealed or obvious must be made to the carrier by the Buyer as soon as possible after receipt of the shipment. Allen-Bradley will be glad to render the Buyer reasonable assistance in the securing of adjustment for such damage claims.

Quotations - All written quotations automatically expire unless accepted within 60 days from the date quoted.
Verbal quotations expire the same day they are used.

Quotations to be binding must specifically identify each product and list the actual quantities involved.
All stenographic and clerical errors are subject to correction.

Price Change - Unless otherwise agreed in writing between Allen-Bradley and Buyer, Allen-Bradley reserves the right to increase or decrease any price with any such increase or decrease to apply to any portion(s) of the sale which is unshipped as of the effective date of such change. Such price change will not apply to any portion(s) of the sale shipped and billed prior to the effective date of the price change.

Taxes - The Buyer shall pay or reimburse Seller for all sales, use, excise or similar taxes.

Access - Unless approved in writing by an officer of Allen-Bradley any access to Allen-Bradley facilities, records or data by Buyer or customer(s) of Buyer, as well as respective agents or representatives, for whatever purpose shall exclude access to proprietary processes and information.

Catalog Prices - Prices shown in any AllenBradley publication are subject to change without notice and are not to be construed as a definite quotation or offer to sell by the Company. Such literature is maintained only as a source of general information, and any prices shown therein are subject to confirmation with a specific quotation.
Warranty - Allen-Bradley Company warrants for a period of one (1) year from date of the Allen-Bradley invoice that equipment furnished under the order will be of merchantable quality free from defects in material, workmanship and design each as determined, at the date of shipment by AllenBradley, by generally recognized, applicable and accepted practices and procedures in the industry - to include any specifications specifically agreed to in writing by Allen-Bradley prior to the date of shipment. Allen-Bradley will not be liable for any

## terms of sale

design furnished by Buyer and incorporated into equipment.

Satisfaction of this warranty, consistent with other provisions herein, will be limited to the replacement or repair or modification of, or issuance of a credit for, the equipment involved, at Allen-Bradley's option, with Allen-Bradley to determine the availability of service personnel and any absorbtion of associated service expenses; such warranty satisfaction available only if (a) Allen-Bradley is promptly notified in writing upon discovery of an alleged defect and (b) Allen-Bradley's examination of the subject equipment discloses to its satisfaction that any defect has not been caused by misuse; neglect; improper installation; improper operation; improper maintenance, repair or alteration; accident; or unusual deterioration or degradation of the equipment or parts thereof due to physical environment or due to electrical or electromagnetic noise environment. THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESSED, IMPLIED OR STATUTORY INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS and hereby excludes certifications or the like for equipment performance, use or design with respect to any standard, regulation or the like (unless and to the extent independently approved in writing at AllenBradley Headquarters) AND EXTENDS ONLY TO BUYER OR CUSTOMER PURCHASING FROM ALLEN-BRADLEY OR AN AUTHORIZED ALLEN. BRADLEY DISTRIBUTOR.

Return of Equipment - Authority for return of equipment, whether under the Warranty Clause or otherwise must be obtained from Allen-Bradley. Such authority shall be granted for each reasonable request. Unless such authority has been granted, shipment will be refused. All equipment returned should include reference to all pertinent order information for that equipment to include order, part numbers as well as details of the system from which the equipment was removed when appropriate. Cost for placing equipment returned for credit in a salable condition will be charged to Buyer, except for, and Allen-Bradley will pay return transportation only for, those returns based upon conditions or circumstances for which Allen-Bradley is responsible by the terms and conditions herein.

Cancellation and Termination - Any order placed with Allen-Bradley can be cancelled by the Buyer only upon payment of reasonable cancellation charges, which shall take into account expenses already incurred and commitments made by AllenBradley.

No termination by Buyer for default shall be effective unless and until Allen-Bradley shall have failed to correct such alleged default within 45 days
after receipt by Allen-Bradley of the written notice specifying such default.

Patents - Allen-Bradley shall defend any suit or proceeding brought against Buyer or customer of Buyer, so far as based upon a claim that the design or construction of equipment sold by Allen-Bradley infringes a United States Patent (excepting a claim based upon a design or modification incorporated in such equipment at the request of Buyer); provided that Buyer promptly notifies Allen-Bradley of any such suit or proceeding in writing and provided that at Allen-Bradley's expense (a) Buyer gives AllenBradley the right to defend or control the defense of any such suit or proceeding to include settlement, and (b) Buyer provides all necessary information and assistance for such defense. This obligation to defend shall extend, in the case of non-standard equipment sold by Allen-Bradley to Buyer to a claim based upon the use of the equipment but only when such use is not in combination with any other apparatus and only to the extent that Allen-Bradley was informed by Buyer of such use in writing prior to the date of shipment.

Allen-Bradley will pay all costs and damages finally awarded or agreed upon by Allen-Bradley which are directly related to any such claim. In the event said equipment, or any part thereof, is in such suit held to constitute infringement and the use of said equipment or part is enjoined, Allen-Bradley will, at its own expense and obligation, either procure for the Buyer the right to continue using said equipment or part, or replace same with non-infringing equipment, or modify it so it becomes non-infringing or remove said apparatus and refund the purchase price and the transportation and installation costs thereof. THIS PARAGRAPH SETS FORTH ALLEN. BRADLEY'S ENTIRE LIABILITY WITH RESPECT TO PATENTS.

All right, title and interest in any inventions, developments, improvements or modifications of or for equipment subject to the order will remain with Allen-Bradley unless otherwise agreed to in a separate written agreement signed by both AllenBradley and Buyer.

## Government Clauses and Contracts -

 Government Contract clauses and any clauses essentially based upon Government Contract Regulations shall only apply to sales subject to a Government Contract. In the event this sale is subject to a Government Contract, the terms and conditions of this sale shall include, if any, only those Government Contract clauses - not inconsistent with terms and conditions herein which applicable Regulations (and the Prime and/or Subcontract to which this sale is subject) require to be included in a Contract or Subcontract such as this sale and only for the minimum necessary purposes of the clause.
## terms of sale

Equipment sold by Allen-Bradley is not intended to be used, nor shall it be used, as a "Basic
Component" under 10 CFR 21 (NRC).
Assignment - This agreement may not be assigned by either party without the written consent of the other party except (1) to a successor corporation by merger or consolidation of either party, or (2) to any corporation acquiring by sale, lease or otherwise substantially all of the property, assets and business of either party, or any division or segment thereof having control of the activities or business to which this agreement relates, or (3) to any corporation controlling, controlled by, or under common control with, either party.

Governing Law - The sale and purchase of the equipment, including all terms and conditions thereof, shall be governed by the Uniform Commercial Code of the State of Wisconsin.

Limit of Liability - IN NO EVENT WILL ALLEN BRADLEY ASSUME RESPONSIBILITY FOR OR BE LIABLE (a) FOR PENALTIES OR PENALTY CLAUSES OF ANY DESCRIPTION, OR (b) FOR CERTIFICATION NOT OTHERWISE SPECIFICALLY PROVIDED HEREIN AND/OR FOR INDEMNIFICATION OF BUYER OR OTHERS FOR COSTS, DAMAGES, OR EXPENSES, EACH ARISING OUT OF OR RELATED TO THE EQUIPMENT OR SERVICES OF THIS ORDER, OR (c) FOR INDIRECT OR CONSEQUENTIAL DAMAGES UNDER ANY CIRCUMSTANCES.

## HEADQUARTERS

MILWAUKEE, WISCONSIN
ALLEN-BRADLEY ELECTRONICS DIVISION

Allen-Bradley Co.
201 South 2nd Street
Milwaukee, Wisconsin 53204, USA
Tel. 414/671.2000
Telex 026699

UNITED KINGDOM
ELECTRONIC COMPONENT
FACTORY AND SALES OFFICE
Allen-Bradley Electronics Ltd.
Pilgrimsway
Bede Industrial Estate
Jarrow.
Tyne and Wear NE32 3EN, England
Tel. 897771 (STD 0632)
Telex (851) 53353

## ELECTRONIC SALES OFFICES AND REPRESENTATIVES IN THE UNITED STATES AND CANADA

| ALABAMA <br> SALES OFFICE: <br> Birmingham, 35209 Allen-Bradley Co. <br> 3332 Old Montgomery Hwy <br> (205) 879.4641 |
| :---: |
| ALASKA <br> SALES OFFICE: <br> Anchorage, 99502 J. A. Tudor \& Associates, Inc. 4641 Sandy Beach Rd. (907) 243-4641 |
| ARIZONA <br> SALES OFFICE: <br> Scottsdale, 85260 <br> Allen-Bradley Co. <br> 7500 E. Butherus Dr. Suite N (602) 948.7161 |
| ARKANSAS <br> SALES OFFICE: <br> Little Rock, 72203 <br> Curtis H. Stout, Inc. <br> 2400 Cantrell Road <br> P.O. Box 107 <br> (501) 372.2555 |
| CALIFORNIA <br> SALES OFFICES: <br> City of Commerce, 90040 <br> Allen-Bradley Co <br> 5915 Sheila Street <br> (213) 724.5713 |
| Sacramento, 95807 <br> Allen-Bradley Co. <br> 1331 "T" Street, Room 10 <br> P.O. Box 1462 <br> (916) 446-4064 |
| San Diego, 92111 <br> Allen-Bradley Co. <br> 8245 Ronson Rd, Suite C <br> (714) 292-4016 |
| South San Francisco, 94080 <br> Allen-Bradley Co. <br> 218 East Grand Avenue <br> P.O. Box 2464 <br> (415) 871.0200 |
| COLORADO <br> SALES OFFICE: <br> Lakewood, 80228 <br> Allen-Bradley Co. <br> 12990 West Cedar Dr. (303) 985.8787 |
| CONNECTICUT <br> SALES OFFICE: <br> Stratford, 06497 <br> Allen-Bradley Co <br> 3060 Main St., Reom 203 <br> (203) 378.7364 |
| FLORIDA <br> SALES OFFICES: <br> Fort Lauderdale, 33310 Allen-Bradley Co. <br> 1001 N.W. 62nd St., Suite 210 <br> P.O. Box 6157 <br> (305) 771.0400 |
| Orlando, 32803 <br> Allen-Bradiey Co. <br> 999 Woodcock Rd, Suite 214 (305) 894.9715 |


| GEORGIA <br> SALES OFFICE: <br> Doraville, 30362 <br> Allen-Bradley Co. <br> 3599 Clearview Pky. <br> P.O. Box 47398 <br> (404) $455-7422$ | MAINE <br> SALES OFFICE: <br> Falmouth, 04105 Allen-Bradiey Co. 360 U.S. Route 1 (207) 781 -5402 |
| :---: | :---: |
| ILLINOIS <br> SALES OFFICES: <br> Chicago, 60607 <br> Allen-Bradley Co. <br> 838 South Desplaines Street <br> (312) 922-9302 | MARYLAND <br> SALES OFFICE: <br> Baltimore, 21207 <br> Allen-Bradley Co. <br> 2062 Lord Baltimore Dr. <br> P.O. Box 11957 <br> (301) 265.5600 |
| Rockford, 61106 <br> Allen-Bradley Co. 1620 Columbia Avenue P.O. Box 3068 <br> (815) 965.8795 <br> INDIANA | MASSACHUSETTS <br> SALES OFFICES: <br> Agawam, 01001 <br> Allen-Bradley Co. <br> South End Bridge Circle <br> (413) 789-0984 |
| SALES OFFICES: <br> Fort Wayne, 46804 Allen Bradiey Co. 3811 Illinois Rd. Suite 45 (219) 432.9538 | Framingham, 01701 Allen Bradley Co. 137 Pennsylvania Avenue P.O. Box 2425 <br> (617) 879.5900 |
| Indianapolis, 46254 <br> Allen-Bradley Co. <br> 3908 Georgetown Road <br> (317) 293.5223 <br> Merrillville, 46410 <br> Allen-Bradley Co. <br> Twin Towers North, Suite 409 | MICHIGAN <br> SALES OFFICES: <br> Flushing, 48433 Allen-Bradley Co. 3489 Pierson Place (313) $733 \cdot 3560$ |
| 1.65 \& Route 30 <br> (219) 769.7770 | Grand Rapids, 49508 Allen-Bradley Co. 1723 44th St. S.E <br> (616) $455-2250$ |
| SALES OFFICE: <br> Bettendorf, 52722 Allen Bradley Co. 2203 Grant Street | Kalamazoo, 49003 Allen-Bradley Co 2401 E, Milham Rd. P.O. Box 2041 (615) 344.6163 |
| (319) 355.5316 | Lansing, 48912 <br> Allen-Bradley Co. <br> 416 Frandor Ave., Suite 103 <br> (517) $351-4560$ |
| KANSAS <br> SALES OFFICE: <br> Wichita, 67211 Allen Bradley Co 357 Lulu Street (316) 267 -1146 | Madison Heights, 48071 <br> Allen-Bradley Co. <br> 32660 Stephenson Highway <br> P.O. Box 523 <br> (313) 583.9400 |
| KENTUCKY <br> SALES OFFICE: <br> Louisville, 40206 Allen-Bradley Co. 123 North Sherrin Avenue PO. Box 6718 | MINNESOTA <br> SALES OFFICE: <br> Minneapolis, 55418 <br> Allen-Bradley Co . <br> 2818 Anthony Lane S. <br> (612) $781 \cdot 3406$ |
| (502) 893.2571 | MISSISSIPPI <br> SALES OFFICE: |
| LOUISIANA <br> SALES OFFICES: Baton Rouge, 70806 Allen-Bradley Co. 1713 Wooddale Blvd. (504) 927.5955 | Jackson, 39216 <br> Allen-Bradley Co. <br> Lakeland Tower Bldg., Suite 215 <br> 1755 Lelia Drive <br> (601) 9814191 |
| Metairie, 70011 <br> Allen-Bradley Co. <br> 3320 Hessmer Avenue <br> P.O. Box 8486 <br> (504) $888-2281$ | MISSOURI <br> SALES OFFICES: <br> Kansas City, 64108 <br> Allen-Bradley Co. <br> 9 West 19th Street <br> (816) 421 - 4595 |
| Curtis H. Stout of Shreveport, Inc 5110 Hollywood Ave. <br> P.O. Box 37027 <br> (318) $636 \cdot 7777$ | Maryland Heights, 63043 Allen-Bradley Co. 127A Weldon Parkway (314) 567.6326 |

## sales offices

NEBRASKA
SALES OFFICE
Omaha, 68127
Allen-Bradley Co.
8944) 592.2010

NEW JERSEY
SALES OFFICE:
Bloomfield, 07003
Allen-Bradley Co.
1293 Broad Street
P.O. Box 1025, Bro
P.O. Box 1025, Brookdale Sta.
(201) 338.4600

NEW MEXICO
SALES OFFICE:
Albuquerque, 87108
Allen-Bradley Co.
114 Morningside Drive N.E.
(505) 881.7270

NEW YORK
SALES OFFICES:
Albany, 12205
1704 Central Avenue
(518) 869.5373

Buffalo, 14225
Allen-Bradley Co
195 Sugg Road
(716) 634.2711

New York
(See Bloomfield, New Jersey)
(212) $682-6070$

Plainview, 11803
88 Sunnyside Blvd., Suite 307
(516) 349.1445

Rochester, 14624
Allen-Bradley Co.
1635 Brooks Ave
(716) 235-0080

Syracuse, 13211
Allen-Bradley Co
218 Boss Road
(315) 463.4501

## NORTH CAROLINA

SALES OFFICES:
Charlotte, 28208
Allen-Bradiey Co.
18871.85 South
(704) 394.9341

Greensboro, 27407
Allen Bradley Co.
2303 W. Meadowview Rd., Suite 46
(919) $852-4961$

NORTH DAKOTA
SALES OFFICE:
Fargo, 58102
Allen Bradley Co.
301. 27 Street S
(701) 280.1703

## OHIO

SALES OFFICES:
Akron, 44304
Allen-Bradiey Co
680 East Market St., Room 308
(216) 253-2106

Cincinnati, 45242
Allen Bradley Co
Allen-Bradiey Co.
10816 Millington Court
(513) 793-7580

Cleveland, 44143
Allen-Bradley Co.
201 Alpha Park
PO. Box 43440
(216) 442.0000

OHIO (Cont'd)
Columbus, 43229
Allen-Bradley Co .
2999 E. Dublin - Granville Rd.
Suite 303
(614) 882.7722

Dayton, 45459
240 W Elmw Co.
(513) 435 - 7720

Toledo, 43615
Allen-Bradley Co
3150 Republic Boulevard N., Suite 3
(419) 841.7726

OKLAHOMA
SALES OFFICE:
Tulsa, 74145
Allen-Bradley Co .
7636 E. 46th Place
(918) 663.5120

## OREGON

SALES OFFICES:
Eugene, 97401
J. A. Tudor \& Associates, Inc

71 Centennial Loop, Suite G
( 503 ) 686-1252
Portland, 97212
J. A. Tudor \& Associates, Inc.

14 N.E. Tillamook Street
(503) 288.5154

PENNSYLVANIA
SALES OFFICES:
Bethlehem, 18017
Allen-Bradley Co.
3005 Brodhead Road
(215) $868-3131$

Erie, 16508
Allen-Bradley Co
Park Place
1545 West 38th Street, Room 9
P.O. Box 3471
(814) $864 \cdot 3066$

King of Prussia, 19406
Allen- Bradley Co .
480 American Avenue
P.O. Box 44
(215) 337.1990

Pittsburgh, 15205
Pittsburgh, 15205
Allen- Bradley Co.
Allen Bradley
4489 Campbells Run Road
(412) 923 -1844

York, 17404
York, 17404
Allen Bradley Co
Allen- Bradley Co.
1585 North Queen Street
1585 North Queen Street
(717) 848-2239

SOUTH CAROLINA
SALES OFFICES:
Charleston, 29407
Charleston, 29407
Allen-Bradley Co.
Allen-Bradley Co.
615 Wesley D. . Suite 309
(803) 5715877
(803) $571-5877$

Greenville, 29609
Allen-Bradley Co.
1720 N. Pleasantburg Dr.
(803) 268.9200

TENNESSEE
SALES OFFICES:
Snoxville, 37919
Knes
Knoxville, 37919
Allen-Bradiey Co.
6200 Baum Drive
(615) 588.0591

Memphis, 38118
Curtis H. Stout of Tennessee, Inc.
3478 Winhoma Dr.
P.O. Box 18224
(901) 362-1616

Nashville, 37220
Allen-Bradley Co.
Executive Park
4741 Trousdale Drive
(615) 834 -1860

## CANADIAN OPERATIONS

FACTORY \& HOME OFFICE:
Allen-Bradley Canada, Limited
135 Dundas Street
Cambridge, Ontario N1R 5X1 (519) 623-1810

ALBERTA
SALES OFFICES:
Calgary, T2H 2 H 9
Allen-Bradley Canada, Ltd.
9.6115 - 4 th St. S.E
(403) 253-1020

Edmonton, T5M 3T9
Allen-Bradley Canada, Ltd.
101-11434-168 St.
(403) 451-2093

BRITISH COLUMBIA
SALES OFFICE:
Vancouver, V5T 1C3
K. H. W. Seppala, Ltd.

12 East Third Avenue (604) $879-4541$

MANITOBA
SALES OFFICE:
Winnipeg, R3H 0X4 Allen-Bradley Canada, Ltd Unit ${ }^{3} 34,1313$ Border St. (204) 633.3914

NEWFOUNDLAND
SALES OFFICE:
Mount Pearl A1N 2X4
(St. Johns Office)
Allen- Bradley Canada, Ltd.
(709) 368-1931

NEW BRUNSWICK
SALES OFFICE:
Moncton, EIC 8L4
Allen-Bradley Canada, Ltd
P.O. Box 306
(506) 386-5263

NOVA SCOTIA
SALES OFFICE:
Dartmouth, B3B 1L7
(Halifax Office)
Allen-Bradley Canada, Lıd.
Ste. 14, 1000 Windmill Rd.
(902) 463.1180

ONTARIO
SALES OFFICES
Cambridge, NIR 5X1
Allen-Bradiey Canada, Ltd.
135 Dundas St.
(519) 653-4051

Don Mills, M3B 2T8
(Toronto Office)
Allen-Bradley Ca
Allen-Bradiey Canada, Ltd.
43A Lesmill Roa
Hamilton, L8H 5X7
Allen-Bradley Canada, Lid.
256 Parkdale Avenue N
(416) $544-2876$

Hanmer, P0M IY0
(Sudbury Office)
Allen-Bradley Canada, Ltd.
4346 Elrnview Dr.
P.O. Box 760
(705) 969.7655

London, N5X 2B9
Allen-Bradley Canada, Ltd.
04 Fanshawe Park Road
(519) $672 \cdot 9061$

Ottawa, K1G 3H6
Allen-Bradley Canada, Ltd.
P.O. Box 8115
(613) 728.3355

Windsor, N9A 6J3
Allen-Bradley Canada, Lid.
4089 E. C. Row Ave. E. - Unit 11
S19) $944-4112$
Telex 064 -77883

QUEBEC
SALES OFFICES:
Dorval, H9P 1E1
Allen. Bradley Canada, Ltd
605 Marshall Avenue
(514) 636 -6220

Les Saules, G2E 5E8
(Quebec Office)
Allen-Bradley Canada, Ltd
795 Avenue St. Jean Baptiste
Suite 104
(418) 871.5455

Telex 051-31504
SASKATCHEWAN
SALES OFFICE:
Saskatoon, S7K 4R5
Saskatoon, S7K 4R5
Allen-Bradley Canada, Ltd.
Allen. Bradley Canada, Ltd
(306) $244-2778$

## sales offices-international

## HEADQUARTERS

MILWAUKEE, WISCONSIN
Allen-Bradley Co
1201 South 2nd Street
Milwaukee, Wisconsin 53204, USA
Milwaukee, Wisco
Tel. $414 / 671 \cdot 2000$
Telex 026699

## UNITED KINGDOM

FACTORY AND SALES OFFICE
Allen-Bradley Electronics Lid.
Pilgrimsway
Bede Industrial Estate
Jarrow,
Tyne and Wear NE32 3EN, England
Tel. 897771 (STD 0632)
Telex (851) 53353

## INTERNATIONAL REPRESENTATIVES

## ARGENTINA

T.R.C. Electronica, S.A.

Lavalieja 1276
BUENOS AIRES, Argentina
Tel. $35 \cdot 9940$

## AUSTRALIA

Allen-Bradley Pty. Lid
188 Whitehorse Road
P.O. Box 69

BALWYN, Victoria 3103, Australia
Tel. 80-4566
Telex (790) 32320
Allen-Bradley Pty. Lic
LIDCOMBE, NSW 2141, Australia

## AUSTRIA

Hans Deutsch u. Hans Roller \& Co. GmbH
Braunhirschgasse 4
Postfach 14.
A-1153, VIENNA Austria
Tel. (0222) 83.13.10
Telex 847132714
BELGIUM
EMAC S.A.
Rue Bara, 134/142
B1070 BRUSSELS (Midi), Belgium
Tel. 02 522-98-30
Telex (846) 23111
EMAC, N.V.
Noorderlaan, 89
Noorderlaan, 89
B. 2030 ANTWERP, Belgium
Tel. 03/413 472
BRAZIL
Grandiente Eletronica Ltda.
Staub Agency Division
P.O. Box 30.318

SAO PAULO, Brazil
Tel. 61 11131
Telex (391) 011.23135 STEL
Grandiente Eletronica Lida.
Staub Agency Division
P.O. Box 9013 . ZC. 02
Botafogo
20.000 RIO DE JANEIRO, Brazil Tel. 226.2043

## DENMARK

Holger Prytz
DK 1165 COPENHAGEN K Denmark
Tel. (01) 143355
Telex (855) 22693
ENGLAND (See Unted Kingdom)
FINLAND
INTO o/y
Lepolantie 16
P.O. Box 22

SF-00661 HELSINSKI 66, Finland
Tel. 90.742133
Telex (857) 121836
FRANCE
Allen-Bradley S.A.
51, rue Jules Ferry
F. 93170 -BAGNOLET, France

Tel. 857-80-35
Telex (842) 240834
GERMANY
Allen Bradley GmbH
Duesselberger Strasse 15
D. 5657 Haan 2-GRUITEN

Federal Republic of Germany
Telex (841) 858 1
HOLLAND (See Netheriands)

INDIA
Electronic Enterprises
Post Bag No. 6367, Unit 216
Regal Industrial Estate
Acharya Donde Marg, Sewri
BOMBAY 4000015
India
Tel. 353069
Telex 953 11:2971

IRELAND (See Unried Kingdrom)

ISRAEL
Eastronics, Ltd.
11 Rozanis St .
P.O. Box 39300

TEL.AVIV 61390 , Israel
Tel. 475151
Telex (922) 33638

ITALY
Special-Ind s.r.I.
Piazza Spotorno, 3
I. 20159 MILANO, Italy
Tel. 68.87951

Tel. 68.87 .951
Telex (843) 36468

## JAPAN

Takachiho Koheki Co., Ltd
2.8, 1 Chome, Yotsuya

Shinjuku-Ku
TOKYO, 160, Japan
Tel. (263) 03-355-111
Telex (781) 02322315

## NETHERLANDS

De Buizerd Electronica B.V
Laan Copes van Cattenburch 76.78 5 GRAVENHAGE-2011. The Netherlands
O. Box 1702

Tel. (070) 469509
Telex (844) 31706

## INTERNATIONAL REPRESENTATIVES

NEW ZEALAND
Donald Brown \& Co. Ltd.
8 South Street
AUCKLAND 1, New Zealand
Tel. 778.456
Telex (791) 2353
NORWAY
J.M. Feiring A/S

Nils Hansens Vei
Nils Hansens Vei 3
P.O. Box 101 . Bryn
OSLO 6. Norway
Tel. (02) 19.62.00
Telex (856) 16435
PERU
Elecsa, S.A.
Auda. Mariscal O.R. Benavides No. 5289
CALLAO, Peru
Mail: Apartado 4618
IMAA, Pery
Telex (354) 20137
PHILIPPINES
G \& S Radiowealth Communications
Div. of Guevara \& Sons Corp.

250 Buendia cor. P. Tamo
MAKATI, Rizal, Philippines
Mail:
P.O. Box 3130

MANILA, Philippines
Tel. 88-63-38, 87-12-11
Telex (RCA) (722) 7496

PORTUGAL
Rualdo Lda.
Rua de S. Jose 9 a 15
Largo da Anunciada 9 e 19.1. ${ }^{\circ}$
LISBON 2 Portugal
Tel. 36.37 .25
Telex (832) 6447
SCOTLAND (See United Kingdom)
SOUTH AFRICA, Republic of
Fairmont Electronics (Pty.) Ltd.
"Northwards"
368 Jan Smuts Avenue
Craighall Park
2196 TRANSVAAL.
Republic of South Africa
Mail Address:
P.O. Box 41102

Craighall
2024, TRANSVAAL
Republic of South Africa
Tel. 789.1230
Telex (960) 4-24842

## SPAIN

Comisa Ingenieros S.A
Reina Mercedes, 20
MADRID 20, Spain
Tel. 2542901
Telex (831) 23723
Comisa Ingenieros S.A.
Ganduxer $\mathrm{n}^{\circ} 14$
BARCELONA 6, Spain
Tel. 291.27.97

## SWEDEN

Traco Forsaljnings $A B$
linthundsvagen 157
Norra Skondal, Sweden
Mail
P.O. Box 103

S123 22 FARSTA Sweden
Tel. 08/93 0960
Telex (854) 10338

## SWITZERLAND

EME AG Zurich
E. M. Egli Werkuertretungen
ohwisstrasse 52
ostfach
CH-8123 EBMATINGEN, Switzerland
el. Zurich (01) 980.11 .11
Telex 52619 emeag
TURKEY
Electronic Firms Group Representatives, Inc
Buyukdere Cadess
Hayat Apt. 28/1
Mecidiyekoy - ISTANBUL, Turkey
Mecidiyekoy
Telex (821) 23506 CTA TR

## UNITED KINGDOM

Allen-Bradley Electronics Ltd.
Pilgrimsway
Bede Industrial Estate
Jarrow,
Tyne and Wear NE32 3EN, England
Tel. 897771 (STD 0632)
Telex (851) 53353



[^0]:    Rating at $70^{\circ} \mathrm{C}$, derated to zero at $130^{\circ} \mathrm{C}$
    2 Rating at $70^{\circ} \mathrm{C}$, derated to zero at $150^{\circ} \mathrm{C}$.

[^1]:    5 QQ.S.571D - Available from Commanding Officer, Naval Supply Depot, 5801 Tabor Ave., Philadelphia, Pennsylvania 19120, provided a military contract is involved.

[^2]:    NOTE - IMPORTANT NOTICE - READ BEFORE HANDLING PRODUCT - "Because AllenBradley Company cannot foresee or control the varied conditions under which this information or the company products may be used, the company does not guarantee, nor will be responsible for, the applicability or accuracy of the information contained in this publication, any modifications and results of such modifications of company products by the user or other parties, to include additional coating, potting or the like, or the suitability of the products in any specific situation or application. Users of the products should make their own tests to determine and satisfy themselves as to the compatibility of coating and/or potting components with the product as supplied by Allen-Bradley Company as well as the suitability of the product, including any modifications such as coating or potting, for the user's specific purpose of applications. Nothing herein shall be construed as a recommendation for uses which infringe valid patents or as extending a license under valid patents."

[^3]:    1 Less than 0004 percent of total resistance or less than 4 ohms, whichever is greater.
    2 Less than 1 percent of total resistance or less than 4 ohms, whichever is greater
    3 Less than 4 ohms
    4 Less than 2 ohms.

[^4]:    NOTE: Unless otherwise specified, Terms, Definitions and Test Procedures are in accordance with Variable Resistive Components Institute Standards vrci-t-110 and vrci-215. Maximum environmental change is specified as 2 ohms on resistive values where 2 ohms exceeds the specified percentage change.

[^5]:    Note: Unless otherwise specified, all parameters are based on the above circuits. The R1 section is adjacent to the shaft

